SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Nano Express

Using anodic aluminum oxide templates and electrochemical method to deposit BiSbTe-based thermoelectric nanowires

Hsin-Hui Kuo1, Chin-Guo Kuo2, Chia-Ying Yen2 and Cheng-Fu Yang3*

Author Affiliations

1 Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan

2 Department of Industrial Education, National Taiwan Normal University, Taipei 106, Taiwan

3 Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan

For all author emails, please log on.

Nanoscale Research Letters 2014, 9:63  doi:10.1186/1556-276X-9-63

Published: 7 February 2014

Abstract

In this study, the cyclic voltammetry method was first used to find the reduced voltages and anodic peaks of Bi3+, Sb3+, and Te4+ ions as the judgments for the growth of the (Bi,Sb)2 - x Te3 + x-based materials. Ethylene glycol (C2H6O2) was used as a solvent, and 0.3 M potassium iodide (KI) was used to improve the conductivity of the solution. Two different electrolyte formulas were first used: (a) 0.01 M Bi(NO3)3-5H2O, 0.01 M SbCl3, and 0.01 M TeCl4 and (b) 0.015 M Bi(NO3)3-5H2O, 0.005 M SbCl3, and 0.0075 M TeCl4. The potentiostatic deposition process was first used to find the effect of reduced voltage on the variation of compositions of the (Bi,Sb)2 - xTe3 + x-based materials. After finding the better reduced voltage, 0.01 M Bi(NO3)3-5H2O, 0.01 M SbCl3, and 0.01 M TeCl4 were used as the electrolyte formula. The pulse deposition process was successfully used to control the composition of the (Bi,Sb)2 - xTe3 + x-based materials and grow the nanowires in anodic aluminum oxide (AAO) templates.

Keywords:
Thermoelectric; Cyclic voltammetry; Electrolyte formula; Nanowires