Open Access Open Badges Nano Idea

Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor

Mohammad Javad Kiani12, Fauzan Khairi Che Harun1*, Mohammad Taghi Ahmadi3, Meisam Rahmani1, Mahdi Saeidmanesh1 and Moslem Zare45

Author Affiliations

1 Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia

2 Department of Electrical Engineering, Islamic Azad University, Yasooj branch, Yasooj 75916, Iran

3 Department Of Electrical Engineering, Urmia University, Urmia 57147, Iran

4 Department of Physics, Yasouj University, Yasouj 75914-353, Iran

5 School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran

For all author emails, please log on.

Nanoscale Research Letters 2014, 9:371  doi:10.1186/1556-276X-9-371

Published: 30 July 2014


Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (QLP and LLP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.

Monolayer graphene; Conductance modulation; Lipid bilayer; Electric charge