SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Nano Express

Topographical control of cell-cell interaction in C6 glioma by nanodot arrays

Chia-Hui Lee1, Ya-Wen Cheng1 and G Steven Huang12*

Author Affiliations

1 Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan

2 Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan

For all author emails, please log on.

Nanoscale Research Letters 2014, 9:250  doi:10.1186/1556-276X-9-250

Published: 21 May 2014

Abstract

Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants.

Keywords:
Nanotopography; Cell networking; Cell-cell communications; Neuron