Open Access Nano Express

Realization of radial p-n junction silicon nanowire solar cell based on low-temperature and shallow phosphorus doping

Gangqiang Dong1, Fengzhen Liu1*, Jing Liu2, Hailong Zhang1 and Meifang Zhu1

Author Affiliations

1 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China

2 Institute of High Energy Physics of Chinese Academy of Sciences, No. 19B Yuquan Road, Shijingshan District, Beijing 100049, China

For all author emails, please log on.

Nanoscale Research Letters 2013, 8:544  doi:10.1186/1556-276X-8-544

Published: 27 December 2013

Abstract

A radial p-n junction solar cell based on vertically free-standing silicon nanowire (SiNW) array is realized using a novel low-temperature and shallow phosphorus doping technique. The SiNW arrays with excellent light trapping property were fabricated by metal-assisted chemical etching technique. The shallow phosphorus doping process was carried out in a hot wire chemical vapor disposition chamber with a low substrate temperature of 250°C and H2-diluted PH3 as the doping gas. Auger electron spectroscopy and Hall effect measurements prove the formation of a shallow p-n junction with P atom surface concentration of above 1020 cm−3 and a junction depth of less than 10 nm. A short circuit current density of 37.13 mA/cm2 is achieved for the radial p-n junction SiNW solar cell, which is enhanced by 7.75% compared with the axial p-n junction SiNW solar cell. The quantum efficiency spectra show that radial transport based on the shallow phosphorus doping of SiNW array improves the carrier collection property and then enhances the blue wavelength region response. The novel shallow doping technique provides great potential in the fabrication of high-efficiency SiNW solar cells.