SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Highly Accessed Nano Express

Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition

Sanghoon Ji1, Ikwhang Chang1, Yoon Ho Lee2, Joonho Park2, Jun Yeol Paek2, Min Hwan Lee3 and Suk Won Cha2*

Author Affiliations

1 Graduate School of Convergence Science and Technology, Seoul National University, 864-1 Lui Dong, Yeongtong-Gu, Suwon, Gyeonggi-Do, 433-270, South Korea

2 School of Mechanical and Aerospace Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea

3 School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, CA, 95343, USA

For all author emails, please log on.

Nanoscale Research Letters 2013, 8:48  doi:10.1186/1556-276X-8-48

Published: 23 January 2013


Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V).

Atomic layer deposition; Protective layer; Thin-film solid oxide fuel cell; Yttria-stabilized zirconia; Gadolinium-doped ceria; Anodic aluminum oxide