Open Access Nano Express

Cone-like graphene nanostructures: electronic and optical properties

Pablo Ulloa1, Andrea Latgé2, Luiz E Oliveira3 and Monica Pacheco1*

Author affiliations

1 Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

2 Instituto de Física, Universidade Federal Fluminense, Niterói, RJ 24210-340, Brazil

3 Instituto de Física, Universidade Estadual de Campinas-UNICAMP, Campinas, SP 13083-859, Brazil

For all author emails, please log on.

Citation and License

Nanoscale Research Letters 2013, 8:384  doi:10.1186/1556-276X-8-384

Published: 12 September 2013


A theoretical study of electronic and optical properties of graphene nanodisks and nanocones is presented within the framework of a tight-binding scheme. The electronic densities of states and absorption coefficients are calculated for such structures with different sizes and topologies. A discrete position approximation is used to describe the electronic states taking into account the effect of the overlap integral to first order. For small finite systems, both total and local densities of states depend sensitively on the number of atoms and characteristic geometry of the structures. Results for the local densities of charge reveal a finite charge distribution around some atoms at the apices and borders of the cone structures. For structures with more than 5,000 atoms, the contribution to the total density of states near the Fermi level essentially comes from states localized at the edges. For other energies, the average density of states exhibits similar features to the case of a graphene lattice. Results for the absorption spectra of nanocones show a peculiar dependence on the photon polarization in the infrared range for all investigated structures.

Nanocones; Graphene; Optical absorption