Figure 2.

Probability density (A). This represents the probability density <a onClick="popup('http://www.nanoscalereslett.com/content/8/1/30/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/8/1/30/mathml/M80">View MathML</a> as a function of q1 and t. Here, we did not take into account the squeezing effect (i.e., we let r1=r2=0). Various values we have taken are q2=0, n1=n2=2, <a onClick="popup('http://www.nanoscalereslett.com/content/8/1/30/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/8/1/30/mathml/M81">View MathML</a>, R0=R1=R2=0.1, L0=L1=L2=1, C1=1, C2=1.2, p1c(0) = p2c(0) = 0, and δ = 0. The values of <a onClick="popup('http://www.nanoscalereslett.com/content/8/1/30/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/8/1/30/mathml/M82">View MathML</a> are (0,0,0,0) (a), (0.5,0.5,0,0) (b), (0.5,0.5,10,4) (c), and (0.5,0.5,0.5,0.53) (d). All values are taken dimensionlessly for convenience: this convention will be used in all subsequent figures.

Choi et al. Nanoscale Research Letters 2013 8:30   doi:10.1186/1556-276X-8-30
Download authors' original image