Abstract
We report on the theoretical studies of a recently discovered strong radiationinduced magnetoresistance spike obtained in ultraclean twodimensional electron systems at low temperatures. The most striking feature of this spike is that it shows up on the second harmonic of the cyclotron resonance. We apply the radiationdriven electron orbits model in the ultraclean scenario. Accordingly, we calculate the new average advanced distance by the electron in a scattering event which will define the unexpected resonance spike position. Calculated results are in good agreement with experiments.
Keywords:
Offresonance; Microwaves; MagnetoresistanceBackground
Transport excited by radiation in a twodimensional electron system (2DES) has been always [13] a central topic in basic and especially in applied research. In the last decade, it was discovered that when a high mobility 2DES in a low and perpendicular magnetic field (B) is irradiated, mainly with microwaves (MW), some striking effects are revealed: radiationinduced magnetoresistance (R_{xx}) oscillations and zero resistance states (ZRS) [4,5]. Different theories and experiments have been proposed to explain these effects [618], but the physical origin is still being questioned. An interesting and challenging experimental results, recently obtained [19] and as intriguing as ZRS, consists in a strong resistance spike which shows up far offresonance. It occurs at twice the cyclotron frequency, w≈2w_{c}[19], where w is the radiation frequency, and w_{c} is the cyclotron frequency.
Remarkably, the only different feature in these experiments [19] is the use of ultraclean samples with mobility μ ∼ 3 × 10^{7} cm^{2} V s^{1} and lower temperatures T∼0.4 K. Yet, for the previous ‘standard’ experiments and samples [4,5], mobility is lower (μ < 10^{7} cm^{2} V s^{1}) and T higher (T ≥ 1.0 K).
In this letter, we theoretically study this radiationinduced R_{xx} spike, applying the theory developed by the authors, the radiationdriven electron orbits model[610,2025]. According to the theory, when a Hall bar is illuminated, the electron orbit centers perform a classical trajectory consisting in a classical forced harmonic motion along the direction of the current at the radiation frequency, w. This motion is damped by the interaction of electrons with the lattice ions and with the consequent emission of acoustic phonons.
We extend this model to an ultraclean sample, where the Landau levels (LL), which in principle are broadened by scattering, become very narrow. This implies an increasing number of states at the center of the LL sharing a similar energy. In between LL, the opposite happens: the density of states dramatically decreases. This will eventually affect the measured stationary current and R_{xx}.
We obtain that in the ultraclean scenario, the measured current on average is the same as the one obtained in a sample with full contribution to R_{xx} but delayed as if it were irradiated with a half MW frequency (w/2). Accordingly, the cyclotron resonance is apparently shifted to a new Bposition around w ≈ 2w_{c}.
Methods
The radiationdriven electron orbits model was developed to explain the R_{xx} response of an irradiated 2DEG at low magnetic field [610,2025]. The corresponding timedependent Schrödinger equation can be exactly solved. Thus, we first obtain an exact expression of the electronic wave vector for a 2DES in a perpendicular B, a DC electric field, and radiation:
where ϕ_{n} is the solution for the Schrödinger equation of the unforced quantum harmonic oscillator. x_{cl}(t) is the classical solution of a forced and damped harmonic oscillator:
where E_{0} is the MW electric field, and γ is a damping factor for the electronic interaction with the lattice ions. Then, the obtained wave function is the same as the standard harmonic oscillator, where the center is displaced by x_{cl}(t). Next, we apply timedependent firstorder perturbation theory to calculate the elastic charged impurity scattering rate between the two oscillating Landau states, the initial Ψ_{n}, and the final state Ψ_{m}[610,2024]: W_{n,m} = 1 / τ, with τ being the elastic charged impurity scattering time.
We find that the average effective distance advanced by the electron in every scattering jump [610,2024],
ΔX^{MW} = ΔX^{0} + A coswτ, where ΔX^{0}, is the advanced distance in the dark [26]. Finally, the longitudinal conductivity σ_{xx} is given by,
with E being the energy [26], and the average electron drift velocity. To obtain R_{xx}, we use the usual tensor relationships .
Importantly, resistance is directly proportional to conductivity: R_{xx}∝σ_{xx}. Thus, finally, the dependence of the magnetoresistance with radiation is given by:
Results and discussion
For ultraclean samples, γ is very small; for experimental magnetic fields [19], . This condition will dramatically affect the average advanced distance by electron in every scattering process. In contrast with standard samples where electrons always find available empty states where to be scattered, in ultraclean samples, we can clearly find two different scenarios that are described in Figure 1.
Figure 1. Schematic diagrams of electronic transport for a ultraclean sample (narrow Landau levels and weak overlapping). (a) In the lower part, no MW field is present. (b) The orbits move backwards during the jump, and the scattering ends around the central part of a LL (grey stripes); then, we have full contribution to the current. (c) The scattering jump ends in between LL (white stripes), giving rise to a negligible contribution to the current because the low density of final Landau states. (d) We depict a ZRS situation. Dotted line represents the Fermi level before the scattering jump; white and black circles represent empty and occupied orbits after the jump, respectively.
In the four panels of energy versus distance, the grey stripes are LL tilted by the action of the DC electric field in the x direction. Here, LL are narrow () and hardly overlap each other, leaving regions with a low density of states in between (white stripes). Therefore, we can observe regularly alternating grey (many states) and white (few states) stripes equally spread out. The first scenario corresponds (see Figure 1b) to an electron being scattered to the central part of a LL. As a result, the scattering can be completed with empty states to be occupied; we obtain full contribution to the conductivity and R_{xx}. In Figure 1c, we describe the second scenario where the electron scatters to a region in between LL with a very low density of states. Obviously, in this case, there is no much contribution to the average or stationary current. In Figure 1d, the scattering is not efficient because the final Landau state is occupied. Both regimes, ‘inbetween LL’ and ‘center of LL’, are distributed equally and alternately along one cycle of the MWdriven electron orbit motion; then, only in onehalf of the cycle, we would obtain a net contribution to the current or R_{xx}.
This situation is physically equivalent to having a half amplitude harmonic motion of frequency w. On the other hand, it is well known that for a simple harmonic motion, it is fulfilled that averaging in one cycle, . Adapting this condition to our specific case, our MWdriven (forced) harmonic motion can be perceived on average as a forced harmonic motion of whole amplitude (full scattering contribution during the whole cycle) and half frequency:
being, and .The last equation is only fulfilled when A ≃ A_{2}, which is a good approximation according to the experimental parameters [19], (T = 0.4 K, B ≤ 0.4 T,w=101 GHz and MW power P ∼ 0.41 mW). With these parameters, we obtain that the amplitudes A and A_{2} are similar and of the order of 10^{6} to 10^{7} m. The consequence is that the ultraclean harmonic motion (electron orbit center displacement) behaves as if the electrons were driven by the radiation of half frequency. Therefore, applying next the theory [610] for the ultraclean scenario, it is straightforward to reach an expression for magnetoresistance:
According to it, now the resonance in R_{xx} will take place at w ≈ 2w_{c}, as experimentally obtained [19]. The intensity of the R_{xx} spike will depend on the relative value of the frequency term, (), and the damping parameter γ in the denominator of the latter R_{xx} expression. When γ leads the denominator, the spike is smeared out. Yet, in situations where γ is smaller than the frequency term, the resonance effect will be more visible, and the spike will show up.
The damping parameter γ is given, after some lengthy algebra, by [27]:
where w_{ac} is the frequency of the acoustic phonons for the experimental parameters [19].For ultraclean samples γ is small [19], and according to the last expression, this makes also the term inside the brackets and γ smaller [2830]. In other words, it makes the damping by acoustic phonon emission and the release of the absorbed energy to the lattice increasingly difficult. Therefore, we have a bottleneck effect for the emission of acoustic phonons. Now, it is possible to reach a situation where , making a resonance effect visible and, therefore, giving rise to a strong resonance peak at w ≈ 2w_{c}.
In Figure 2, we present a calculated irradiated R_{xx} vs. static magnetic field for a radiation frequency of f = 101 GHz. The curve or a dark situation is also presented. For a temperature T = 0.4 K, we obtain a strong spike at w ≈ 2w_{c} as in the experiments by [19].
Figure 2. Calculated irradiated magnetoresistance versus static magnetic field for a radiation frequency of f = 101 GHz. The dark curve is also presented. For a temperature of 0.4 K, we observe an intense spike at w ≈ 2w_{c}.
Finally, we obtain the usual radiationinduced R_{xx} oscillations and ZRS as in standard samples.
Conclusions
In this letter, we have presented a theoretical approach to the striking result of the magnetoresistance spike in the second harmonic of the cyclotron frequency. According to our model, the strong change in the density of Landau states in ultraclean samples affects dramatically the electron impurity scattering and eventually the conductivity. The final result is that the scattered electrons perceive radiation as of half frequency. The calculated results are in good agreement with experiments.
Competing interests
The author declares that he has no competing interests.
Authors’ information
JI is an associate professor at the University Carlos III of Madrid. He is currently studying the effect of radiation on twodimensional electron systems.
Acknowledgements
This work is supported by the MCYT (Spain) under grant MAT201124331 and ITN grant 234970 (EU).
References

Iñarrea J, Platero G: Photoinduced current bistabilities in a semiconductor double barrier.
Europhys Lett 1996, 34:4347. Publisher Full Text

Iñarrea J, Platero G: Photoassisted sequential tunnelling through superlattices.
Europhys Lett 1996, 33:477482. Publisher Full Text

Iñarrea J, Aguado R, Platero G: Electronphoton interaction in resonant tunneling diodes.
Europhys Lett 1997, 40:417422. Publisher Full Text

Mani RG, Smet JH, von Klitzing K, Narayanamurti V, Johnson WB, Umansky V: Zeroresistance states induced by electromagneticwave excitation in GaAs/AlGaAs heterostructures.
Nature (London) 2002, 420:646650. Publisher Full Text

Zudov MA, Du RR, Pfeiffer LN, West KW: Evidence for a new dissipationless effect in 2D electronic transport.
Phys Rev Lett 2003, 90:046807. PubMed Abstract  Publisher Full Text

Iñarrea J, Platero G: Theoretical approach to microwaveradiationinduced zeroresistance states in 2D electron systems.
Phys Rev Lett 2005, 94:016806. PubMed Abstract  Publisher Full Text

Iñarrea J, Platero G: From zero resistance states to absolute negative conductivity in microwave irradiated twodimensional electron systems.
Appl Phys Lett 2006, 89:052109. Publisher Full Text

Iñarrea J, Platero G: Polarization immunity of magnetoresistivity response under microwave excitation.

Iñarrea J: Hall magnetoresistivity response under microwave excitation revisited.
Appl Phys Lett 2007, 90:172118. Publisher Full Text

Iñarrea J, Platero G: Temperature effects on microwaveinduced resistivity oscillations and zeroresistance states in twodimensional electron systems.

Durst AC, Sachdev S, Read N, Girvin SM: Radiationinduced magnetoresistance oscillations in a 2D electron gas.
Phys Rev Lett 2003, 91:086803. PubMed Abstract  Publisher Full Text

Mani RG, Smet JH, von Klitzing K, Narayanamurti V, Johnson WB, Umansky V: Demonstration of a 1/4cycle phase shift in the radiationinduced oscillatory magnetoresistance in GaAs/AlGaAs devices.
Phys Rev Lett 2004, 92:146801. PubMed Abstract  Publisher Full Text

Mani RG, Smet JH, von Klitzing K, Narayanamurti V, Johnson WB, Umansky V: Radiationinduced oscillatory magnetoresistance as a sensitive probe of the zerofield spinsplitting in highmobility GaAs/AlxGa1xAs devices.

Yuan ZQ, Yang CL, Du RR, Pfeiffer LN, West KW: Microwave photoresistance of a highmobility electron gas in a triangular antidot lattice.

Mani RG, Gerl C, Schmult S, Wegscheider W, Umansky V: Nonlinear growth in the amplitude of radiationinduced magnetoresistance oscillations.

Mani RG: Narrowband radiation sensing in the terahertz and microwave bands using the radiationinduced magnetoresistance oscillations.
Appl Phys Lett 2008, 92:102107. Publisher Full Text

Mani RG, Ramanayaka AN, Wegscheider W: Observation of linearpolarizationsensitivity in the microwaveradiationinduced magnetoresistance oscillations.

Mani RG, Hankinson J, Berger C, Wegscheider W: Observation of resistively detected hole spin resonance and zerofield pseudospin splitting in epitaxial graphene.

Dai Y, Du RR, Pfeiffer LN, West KW: Observation of a cyclotron harmonic spike in microwaveinduced resistances in ultraclean GaAs/AlGaAs quantum wells.
Phys Rev Lett 2010, 105:246802. PubMed Abstract  Publisher Full Text

Iñarrea J, Platero G: Magnetoresistivity modulated response in bichromatic microwave irradiated two dimensional electron systems.
Appl Phys Lett 2006, 89:172114. Publisher Full Text

Iñarrea J, LopezMonis C, MacDonald AH, Platero G: Hysteretic behavior in weakly coupled doubledot transport in the spin blockade regime.
Appl Phys Lett 2007, 91:252112. Publisher Full Text

Iñarrea J: Anharmonic behavior in microwavedriven resistivity oscillations in Hall bars.
Appl Phys Lett 2007, 90:262101. Publisher Full Text

Iñarrea J, Platero G: Driving Weiss oscillations to zero resistance states by microwave radiation.
Appl Phys Lett 2008, 93:062104. Publisher Full Text

Iñarrea J: Effect of frequency and temperature on microwaveinduced magnetoresistance oscillations in twodimensional electron systems.
Appl Phys Lett 2008, 92:192113. Publisher Full Text

Kerner EH: Note on the forced and damped oscillator in quantum mechanics.
Can J Phys 1958, 36:371. Publisher Full Text

Ridley BK: Quantum Processes in Semiconductors. UK: Oxford University Press; 1993.

Ando T, Fowler A, Stern F: Electronic properties of twodimensional systems.
Rev Mod Phys 1982, 54:437672. Publisher Full Text

Iñarrea J, Platero G: Microwaveinduced resistance oscillations and zeroresistance states in twodimensional electron systems with two occupied subbands.

Iñarrea J, Mani RG, Wegscheider W: Sublinear radiation power dependence of photoexcited resistance oscillations in twodimensional electron systems.

Iñarrea J, Platero G: Effect of an inplane magnetic field on microwaveassisted magnetotransport in a twodimensional electron system.