SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Nano Express

Fabrication of a new type of organic-inorganic hybrid superlattice films combined with titanium oxide and polydiacetylene

Kwan-Hyuck Yoon, Kyu-Seok Han and Myung-Mo Sung*

Author Affiliations

Department of Chemistry, Hanyang University, Seoul, 133-791, South Korea

For all author emails, please log on.

Nanoscale Research Letters 2012, 7:71  doi:10.1186/1556-276X-7-71

Published: 5 January 2012

Abstract

We fabricated a new organic-inorganic hybrid superlattice film using molecular layer deposition [MLD] combined with atomic layer deposition [ALD]. In the molecular layer deposition process, polydiacetylene [PDA] layers were grown by repeated sequential adsorption of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet polymerization under a substrate temperature of 100°C. Titanium oxide [TiO2] inorganic layers were deposited at the same temperatures with alternating surface-saturating reactions of titanium tetrachloride and water. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the nanohybrid films. The transmission electron microscopy analysis of the titanium oxide cross-linked polydiacetylene [TiOPDA]-TiO2 thin films confirmed the MLD growth rate and showed that the films are amorphous superlattices. Composition and polymerization of the films were confirmed by infrared spectroscopy. The TiOPDA-TiO2 nanohybrid superlattice films exhibited good thermal and mechanical stabilities.

PACS: 81.07.Pr, organic-inorganic hybrid nanostructures; 82.35.-x, polymerization; 81.15.-z, film deposition; 81.15.Gh, chemical vapor deposition (including plasma enhanced CVD, MOCVD, ALD, etc.).

Keywords:
organic-inorganic nanohybrid superlattices; molecular layer deposition; atomic layer deposition; polydiacetylene.