Open Access Nano Express

Time-dependent universal conductance fluctuations in IrO2 nanowires

Yong-Han Lin1, Lu-Yao Wang2* and Juhn-Jong Lin13*

Author affiliations

1 Institute of Physics, National Chiao Tung University, Hsinchu 30010, Taiwan

2 Department of Physics, Fu Jen Catholic University, Hsinchuang 24205, Taiwan

3 Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan

For all author emails, please log on.

Citation and License

Nanoscale Research Letters 2012, 7:673  doi:10.1186/1556-276X-7-673


The electronic version of this article is the complete one and can be found online at: http://www.nanoscalereslett.com/content


Received:21 September 2012
Accepted:4 December 2012
Published:13 December 2012

© 2012 Lin et al.; licensee Springer.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Single-crystalline iridium dioxide nanowires show the time-dependent universal conductance fluctuations (TUCFs) at cryogenic temperatures. The conductance fluctuations persist up to temperature T as high as nearly 10 K. The root-mean-square TUCF magnitudes increase with decreasing T, reaching approximately 0.1 e2 / h at 1.7 K. We ascribe these conductance fluctuations to originating from the conduction electrons scattering upon mobile defects (moving scattering centers). Our measured TUCF characteristics are satisfactorily explained in terms of the existing TUCF theory in its three-dimensional form. The extracted electron dephasing length Lφ(1.7 K) ≃90 nm is smaller than the diameter (≈ 180 nm) of our nanowires.

Keywords:
Quantum-interference effect; Universal conductance fluctuation; Mobile defect; Iridium dioxide nanowire; Rutile structure

Background

Quantum-interference effects often manifest in the electronic transport properties of miniature conductors at cryogenic temperatures [1,2]. The recent development in nanoscale material synthesis methods has made the fabrications of quasi-one-dimensional (Q1D) nanowires widely accessible. One of the experimental realizations of the marked quantum-interference effects is the observation of the universal conductance fluctuations (UCFs) [1-3] in Q1D metallic [4,5] and heavily doped semiconductor [6,7] nanowires. In sharp contrast to the classical thermal noise, the UCF magnitudes increase with reducing temperature T[8-11], owing to the inherent quantum nature of the electron waves traversing in a weakly random potential. In the limit of T→0, the root-mean-square UCF magnitudes are theoretically predicted to reach a universal value of Ce2 / h, where the constant C depends on sample dimensionality and is of order unity in one, two and three dimensions. A weakly random potential realized in a given sample corresponds to a specific impurity configuration. In the case of the presence of static defects alone, magnetic-field (and Fermi-energy, via a back-gate voltage) dependent UCFs can be observed. This kind of aperiodic UCF ‘magneto-fingerprints’ are largely reproducible if the sample is constantly kept at low temperatures and thus, the impurity configuration remains unaltered during the course of the measurement. Such magnetic-field dependent UCFs have been commonly observed in the past three decades [12-15]. The second kind of conductance fluctuations is the time-dependent UCFs (TUCFs) which have rarely been seen in experiments using conventional lithographic metal mesoscopic structures [16-18]. Recently, two of the authors have observed pronounced TUCFs in single-crystalline RuO2 nanowires grown by the thermal evaporation method [4]. The TUCF signals persisted up to as high as T > 10 K. The measured TUCFs were ascribed to originating from the scattering of conduction electrons with mobile defects, i.e., moving scattering centers [19]. A quantitative comparison with the existing theoretical predictions [20,21] was satisfactory and, in particular, the number of mobile defects in a phase-coherent volume had been inferred. The mobile defects were proposed to be associated with certain point defects (e.g., oxygen vacancies) which were contained in the as-grown nanowires.

In this paper, we would like to show that notable TUCFs also exist in single-crystalline iridium dioxide (IrO2) nanowires grown by the distinctly different metal-organic chemical vapor deposition (MOCVD) method. Taking together the results obtained in these two complimentary RuO2 and IrO2 nanowire experiments, we demonstrate that mobile defects are common and rich in conducting metal oxide nanowires with rutile structure, regardless of how the nanowires are synthesized. This observation could have important bearing on the fundamental understanding and future applications of nanoscale metallic oxide materials. We would like to mention that TUCFs in conventional metal mesoscopic structures fabricated by physical deposition in conjunction with lithographic method only occur at sub-kelvin temperatures [16-18].

Methods

Single-crystalline IrO2 nanowires were grown by the MOCVD method. The morphology and atomic structure of the nanowires were studied by scanning electron microscopy (SEM) and transmission electron microscopy. Four-probe single nanowire devices were fabricated by the electron-beam lithography, as described previously [22]. (The inset of Figure 1 shows an SEM image of the NW1 device taken from [22]. In [22], the electrical transport properties of the two NW1 and NW2 nanowire devices had been studied at high temperatures of 30 to 300 K.) The resistance measurements were performed on a standard 4He cryostat. A Linear Research LR-700 ac resistance bridge (Linear Research Inc., San Diego, CA, USA) operating at a frequency of 16 Hz was employed for resistance measurements. An excitation current of ≲ 100 nA (so that the voltage drop ≲ kBT/e, where kB is the Boltzmann constant, and e is the electronic charge) was applied to avoid joule heating. Table 1 lists the parameters of the two nanowires studied in this work.

thumbnailFigure 1. Variation of normalized resistance R(T)/R (30 K) with logarithm of temperature for the NW1 device. The insets show the resistance as a function of temperature between 1.7 and 300 K and an SEM image of the NW1 device taken from [22].

Table 1. Values of relevant parameters for two IrO2nanowire devices

Results and discussion

The inset of Figure 1 shows the temperature dependence of resistance for the NW1 device from room temperature down to 1.7 K. This figure clearly reveals that the overall electrical transport property of this single-crystalline nanowire is metallic, as previously established theoretically [23] and experimentally [22,24]. At temperature T below about 50 K, the resistance increases slightly with further reduction of T, suggesting that this nanowire lies in the weakly disordered regime of kFl > 1, where kF is the Fermi wavenumber, and l is the electron mean free path (kFl ≈ 6 in this particular nanowire). The small relative resistance increase of R(1.7 K) / R(50 K) ≃1.014 can arise from the contributions of the weak localization and electron-electron interaction effects [2,25] (and possibly also from other effects such as the two-level tunneling systems [4,26]).

The main panel of Figure 1 plots the normalized resistance, R(T) / R(30 K), as a function of temperature for T < 60 K. The nanowire resistance was recorded while the temperature was decreased relatively slowly. What is most interesting in this figure is the notably increased resistance distribution at a fixed T as the temperature is lowered to approximately below 6 K. As shown in the previous studies [4,16-18], this increased resistance distribution with decreasing temperature directly manifests the TUCF behavior whose origin is the existence of moving scattering centers in this particular nanowire. As a consequence, the measured resistance is a function of time at a given temperature. This observation comprises the central theme of this paper. This resistance distribution reflects the presence of the TUCF phenomenon. Thus, we shall argue in our succeeding discussion that a small fraction of the point defects contained in our as-grown nanowires must be the mobile defects. It should be noted that the TUCFs are originated from an inherent quantum-interference mechanism. Contrary to the thermal noise, the fluctuation magnitudes of the TUCFs progressively diminish as the temperature increases.

We discuss the TUCF features in a more intuitive manner. In Figure 2, we plot the resistance as a function of time for the NW1 device at several T values below 10 K. Inspection of this figure clearly indicates that, at a given T, the resistance fluctuates with time. There exist both overlapping fast fluctuations and individual slow fluctuations (the slow ones are indicated by arrows in some of them). In particular, the magnitudes of the fast fluctuations increase with decreasing temperature. As the temperature increases to about 10 K, the fast fluctuations disappear to within our experimental error (i.e., our instrumental noise), while the slow fluctuations mimic random telegraph noise [27]. In order to compare with the existing TUCF theory of Feng [21], we shall focus our discussion on the fast resistance fluctuations in this paper.

thumbnailFigure 2. Variation of resistance with time for the NW1 device. Resistance as a function of time for the NW1 device at five temperatures, as indicated. The resistances at 8.0, 4.2, 2.8, and 1.73 K have been offset by 2, 4, 6, and 8 Ω, respectively, for clarity. The arrows indicate four slow fluctuations occurring at ≈ 280, ≈ 370, ≈ 760, and ≈ 945 s in the resistance curve for T = 4.2 K.

Figure 3 plots the temporal variation of the conductance fluctuations δG = G − 〈G〉 in units of the quantum conductance e2/h for the NW1 device at T = 1.73 K, where 〈G〉 is the measured conductance G = 1 / Raveraged over time. It can be seen that the ‘peak-to-peak’ conductance fluctuation magnitude reaches ≈ 0.1 to 0.2 e2 / h. This result of a fraction of e2 / h at low T provides a meaningful indication that our measured conductance fluctuations are associated with the TUCF phenomenon [4,21].

thumbnailFigure 3. TUCFs for the NW1 device. Conductance variation δG = G − 〈G〉 versus time for the NW1 device at T = 1.73 K plotted in units of the quantum conductance e2 / h.

In order to quantitatively analyze the fast TUCFs, we evaluate the root-mean-square magnitude of the conductance fluctuation defined by <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/673/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/673/mathml/M1">View MathML</a>, where 〈…〉denotes the averaging over a proper time interval while excluding the slow fluctuations. Figure 4 plots δGrms as a function of T in double-logarithmic scales for the NW1 and NW2 devices studied in this work. This figure clearly demonstrates that our measured δGrmsincreases with decreasing T in both nanowires. As T increases to about 10 K, the size of δGrmsbecomes indistinguishable from the instrumental noise (our instrumental noise level is ≈ 0.01e2 / h in the present study; therefore, the data points at 20 K in Figure 4 are only plotted for reference).

thumbnailFigure 4. Root-mean-square conductance fluctuation magnitude δGrmsas function of temperature for NW1 and NW2 devices. The dot-dashed, dashed, and dotted curves are the theoretical predictions of Equation 1 with the exponent of temperature p = 2, 3, and 4, respectively, for the electron-phonon relaxation rate 1/τep = AepTp. The inset shows the extracted electron dephasing length Lφ as a function of temperature for the two nanowires. The dashed curve indicates a T3 temperature dependence. The data points at 10 K could be subject to large uncertainties and are only drawn for reference.

Theoretically, the TUCFs in different sample dimensionalities and under different conditions have been studied by Al’tshuler [8,9] and Lee, Stone, and Fukuyama [10,11]. In particular, Feng and coworkers [20,21] have proposed that the TUCFs are very sensitive to the motion of single or a few mobile defects. In order to interpret our TUCF data, it is important to identify the effective sample dimensionality of our IrO2 nanowires. In the quantum-interference studies, the effective nanowire dimensionality is determined by the ratio of the electron dephasing length Lφ to the nanowire diameter d. A nanowire lies in the Q1D regime if Lφ / d ≫ 1, and in the three-dimensional (3D) regime if Lφ / d ≪ 1. We have found that our measured δGrms(T) definitely cannot be consistently described by the Q1D form of the TUCF theory, because using the Q1D form would always lead to an extracted Lφ smaller than d. Therefore, we have turned to compare our results with the 3D theoretical form. Feng predicted that for a 3D sample and in the ‘saturated’ regime, the TUCF magnitudes are given by [21]

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/673/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/673/mathml/M2">View MathML</a>

(1)

where L (>Lφ) is the nanowire sample length. In the theory, the so-called saturated regime refers to the regime with the parameter β ≫ (/Lφ)2, where β stands for the ratio of the number of mobile defects to the number of total (static and mobile) defects.

We have carried out least-squares fits of our measured δGrms(T) to the predictions of Equation 1, using <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/673/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/673/mathml/M3">View MathML</a> as the sole adjustable parameter, where D is the electron diffusion constant, and τφ is the T dependent electron dephasing time. Explicitly, in a 3D weakly disordered conductor, the total electron dephasing rate is essentially given by two contributions [28,29]: <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/673/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/673/mathml/M4">View MathML</a>, where the first contribution <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/673/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/673/mathml/M5">View MathML</a> is a constant or a very weakly T-dependent term [30,31], and the second contribution <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/673/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/673/mathml/M6">View MathML</a> denotes the electron-phonon relaxation rate, with Aep being the electron-phonon coupling strength, and p being an exponent of temperature. In general, the value of p depends on the measurement temperature interval as well as the degree of disorder in the sample. Typically, 2 ≤ p ≤ 4 in 3D metals [30-32].

Since the NW1 and NW2 devices reveal overall similar TUCF features (except that the TUCF magnitudes in the latter are somewhat smaller than those in the former), we shall concentrate the following discussion on the NW1 device. Our fitted results with the exponent of temperature p being fixed to be 2, 3, or 4 are shown by the dot-dashed, dashed, and dotted curves, respectively, in the main panel of Figure 4 (for simplicity, we chose the value of p to be an integer in our least-squares fits to Equation 1). Inspection of this figure indicates that Equation 1 can satisfactorily describe the experimental results. The fit with the exponent p = 3 gives a slightly (notably) better description than that with p = 4(2). Numerically, our fitted values of the relevant parameters for the NW1 device are listed in Table 2. The extracted electron-phonon coupling strength Aep ≈ 4 × 109 Kp s−1 is compatible to that previously found in normal metals, such as RuO2 nanowires [4] and AuPd wires and films [28,29]. We would like to note in passing that a more quantitative extraction of the value of p would require further measurements on, e.g., the magnetoresistances in the weak-localization effect [25,28,29].

Table 2. Values of fitted parameters for the electron dephasing rate<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/673/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/673/mathml/M7">View MathML</a>in NW1 device

Our extracted Lφ values at different temperatures between 1.7 and 10 K are plotted in the inset of Figure 4. We obtain a relatively short Lφ(1.7 K) ≈ 90 nm in the NW1 device. Moreover, Lφ decreases rapidly with increasingT, reaching a small size ofLφ(8 K) ≈ 10 nm. The extracted relatively short Lφ values may partly arise from non-negligible experimental uncertainties. First, our measured TUCF magnitudes are small, which render large uncertainties in the separation and evaluations of δGrms from the background instrumental noise (experimentally, our TUCF signals become hardly distinguished from the instrumental noise as T ≳ 8K). Second, our nanowires with diameters of 180 nm may fall close to the 1D-to-3D crossover regime with regards to the quantum-interference effects, instead of falling deep in the 3D regime. Therefore, Equation 1 is probably only about to become fully valid (however, we would like to remind that our data definitely cannot be described by the 1D form of TUCF theory). Third, the determination of the relevant sample volume Ld2 is subject to some uncertainties. In any case, note that we obtain Lφ < d over our measurement T range; hence, the 3D TUCF phenomenon in this NW1 device is more or less justified.

Conclusions

We have observed TUCFs at cryogenic temperatures in metallic single-crystalline IrO2 nanowires grown by the MOCVD method. The TUCFs originate from the scattering of conduction electrons upon mobile defects. Our measured TUCF magnitudes as a function of temperature are satisfactorily described by the existing theory in the three-dimensional regime. Taken together with our previous observations in single-crystalline RuO2 nanowires grown by the distinctly different thermal evaporation method [4], the present study indicates that moving scattering centers may be common to the conducting metal oxide rutile nanostructures, regardless of how they are synthesized. Our observations could have important bearing on the fundamental research and technological applications of synthetic metal oxide nanoelectronic devices.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YHL fabricated the devices and conducted the electrical measurements. LYW analyzed the results and wrote the manuscript. JJL coordinated and supervised the overall study and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to YS Huang for providing us with the IrO2 nanowires used in this study. This work was supported by Taiwan National Science Council through Grant No. 101-2120-M-009-005 and by the MOE ATU Program (for JJL).

References

  1. Akkermans E, Montambaux G: Mesoscopic Physics with Electrons and Photons. Cambridge: Cambridge University Press; 2007. OpenURL

  2. Al’tshuler BL, Lee PA, Webb RA: Mesoscopic Phenomena in Solids. New York: Elsevier; 1991. OpenURL

  3. Washburn S, Webb RA: Aharonov-Bohm effect in normal metal: quantum coherence and transport.

    Adv Phys 1986, 35:375. Publisher Full Text OpenURL

  4. Lien AS, Wang LY, Chu CS, Lin JJ: Temporal universal conductance fluctuations in RuO2 nanowires due to mobile defects.

    Phys Rev B 2011, 84:155432. OpenURL

  5. Yang PY, Wang LY, Hsu YW, Lin JJ: Universal conductance fluctuations in indium tin oxide nanowires.

    Phys Rev B 2012, 85:085423. OpenURL

  6. Estévez Hernández S, Akabori M, Sladek K, Volk Ch, Alagha S, Hardtdegen H, Pala MG, Demarina N, Grützmacher D, Schäpers Th: Spin-orbit coupling and phase coherence in InAs nanowires.

    Phys Rev B 2010, 82:235303. OpenURL

  7. Alagha S, Estévez Hernández S, Blömers C, Stoica T, Calarco R, Schäpers Th: Universal conductance fluctuations and localization effects in InN nanowires connected in parallel.

    J Appl Phys 2010, 108:113704. Publisher Full Text OpenURL

  8. Al’tshuler BL: Fluctuations in the extrinsic conductivity of disordered conductors.

    JETP Lett 1985, 41:648. OpenURL

  9. Al’tshuler BL, Khmel’Nitskiı̆ DE: Fluctuation properties of small conductors.

    JETP Lett 1986, 42:359. OpenURL

  10. Lee PA, Stone AD: Universal conductance fluctuations in metals.

    Phys Rev Lett 1985, 55:1622. PubMed Abstract | Publisher Full Text OpenURL

  11. Lee PA, Stone AD, Fukuyama H: Universal conductance fluctuations in metals: effects of finite temperature, interactions, and magnetic field.

    Phys Rev B 1987, 35:1039. Publisher Full Text OpenURL

  12. Umbach CP, Washburn S, Laibowitz RB, Webb RA: Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines.

    Phys Rev B 1984, 30:4048. Publisher Full Text OpenURL

  13. Licini JC, Bishop DJ, Kastner MA, Melngailis J: Aperiodic magnetoresistance oscillations in narrow inversion layers in Si.

    Phys Rev Lett 2987, 55:1985. OpenURL

  14. Skocpol WJ, Mankiewich PM, Howard RE, Jackel LD, Tennant DM, Stone AD: Universal conductance fluctuations in silicon inversion-layer nanostructures.

    Phys Rev Lett 2865, 56:1986. OpenURL

  15. Thornton TJ, Pepper M, Ahmed H, Davies GJ, Andrews D: Universal conductance fluctuations and electron coherence lengths in a narrow two-dimensional electron gas.

    Phys Rev B 1987, 36:4514. Publisher Full Text OpenURL

  16. Beutler DE, Meisenheimer TL, Giordano N: Resistance fluctuations in thin Bi wires and films.

    Phys Rev Lett 1987, 58:1240. PubMed Abstract | Publisher Full Text OpenURL

  17. Meisenheimer TL, Giordano N: Conductance fluctuations in thin silver films.

    Phys Rev B 1989, 39:9929. Publisher Full Text OpenURL

  18. Meisenheimer TL, Beutler DE, Giordano N: Conductance fluctuations in thin metal films.

    Jpn J Appl Phys 1987, 26:695. Publisher Full Text OpenURL

  19. Giordano N: Conductance fluctuations and low-frequency noise in small disordered systems: experiment. In Mesoscopic Phenomena in Solids. Edited by Al’tshuler BL, Lee PA, Webb RA. Elsevier, New York; 1991:131-131. OpenURL

  20. Feng S, Lee PA, Stone AD: Sensitivity of the conductance of a disordered metal to the motion of a single atom: implications for 1/f noise.

    Phys Rev Lett 1986, 56:1960.

    A published erratum appears in Phys Rev Lett 1986, 56:2772

    PubMed Abstract | Publisher Full Text OpenURL

  21. Feng S: Conductance fluctuations and 1/f noise magnitudes in small disordered structures: theory. In Mesoscopic Phenomena in Solids. Edited by Al’tshuler BL, Lee PA, Webb RA. New York: Elsevier; 1991:107-107. OpenURL

  22. Lin YH, Sun YC, Jian WB, Chang HM, Huang YS, Lin JJ: Electrical transport studies of individual IrO2 nanorods and their nanorod contacts.

    Nanotechnology 2008, 19:045711. PubMed Abstract | Publisher Full Text OpenURL

  23. Mattheiss LF: Electronic structure of RuO2, OsO2, and IrO2.

    Phys Rev B 2433, 13:1976. OpenURL

  24. Lin JJ, Huang SM, Lin YH, Lee TC, Liu H, Zhang XX, Chen RS, Huang YS: Low temperature electrical transport properties of RuO2 and IrO2 single crystals.

    J Phys: Condens Matter 2004, 16:8035. Publisher Full Text OpenURL

  25. Al’tshuler BL, Aronov AG, Gershenson ME, Sharvin Yu V: Quantum effects in disordered metal films.

    Sov Sci Rev Sect A: Phys Rev 1987, 9:223. OpenURL

  26. Chiu SP, Chung HF, Lin YH, Kai JJ, Chen FR, Lin JJ: Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K.

    Nanotechnology 2009, 20:105203. PubMed Abstract | Publisher Full Text OpenURL

  27. Ralls KS, Skocpol WJ, Jackel LD, Howard RE, Fetter LA, Epworth RW, Tennant DM: Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1/f?) noise.

    Phys Rev Lett 1984, 52:228. Publisher Full Text OpenURL

  28. Zhong YL, Lin JJ: Observation of a linear mean-free-path dependence of the electron-phonon scattering rate in thick AuPd films.

    Phys Rev Lett 1998, 80:588. Publisher Full Text OpenURL

  29. Zhong YL, Sergeev A, Chen CD, Lin JJ: Direct observation of electron dephasing due to inelastic scattering from defects in weakly disordered AuPd wires.

    Phys Rev Lett 2010, 104:206803. PubMed Abstract | Publisher Full Text OpenURL

  30. Lin JJ, Bird JP: Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures.

    J Phys: Condens Matter 2002, 14:R501. Publisher Full Text OpenURL

  31. Lin JJ, Li TJ, Zhong YL: Electron dephasing near zero temperature: an experimental review.

    J Phys Soc Jpn 2003, 72(Suppl. A):7. OpenURL

  32. Sergeev A, Mitin V: Electron-phonon interaction in disordered conductors: static and vibrating scattering potentials.

    Phys Rev B 2000, 61:6041. Publisher Full Text OpenURL