Abstract
The coupling between DNA molecules and quantum dots can result in impressive nonlinear optical properties. In this paper, we theoretically demonstrate the significant enhancement of Kerr coefficient of signal light using optical pumpprobe technique when the pumpexciton detuning is zero, and the probeexciton detuning is adjusted properly to the frequency of DNA vibration mode. The magnitude of optical Kerr coefficient can be tuned by modifying the intensity of the pump beam. It is shown clearly that this phenomenon cannot occur without the DNAquantum dot coupling. The present research will lead us to know more about the anomalous nonlinear optical behaviors in the hybrid DNAquantum dot systems, which may have potential applications in the fields such as DNA detection.
Keywords:
Kerr effects; DNAquantum dot system; Optoelectronic materialBackground
Biomaterials are now drawing more and more attention since they often present special properties which are not easily obtained from traditional inorganic or organic materials. In addition, biomaterials come from renewable resources and are usually biodegradable. Among biomaterials, researches have been interested in DNA for various reasons, such as potential applications of DNA assembly in molecular electronic devices [1], nanoscale robotics [2], and DNAbased computation [3]. One of the most interesting applications in DNA is to use DNA as a kind of optoelectronic material. Thin film of DNACTMA has been used successfully in various applications such as organic light emitting diodes, a cladding and host material in nonlinear optical devices, and organic fieldeffect transistors because of its nature of large dielectric constant and large band gap [4]. DNAbased polymers are utilized in optically pumped organic solidstate lasers [5]. A better understanding of the nonlinear optical properties of DNA materials will undoubtedly lead us to more exciting applications. So, many researches on nonlinear optical properties of DNA materials have been undertaken. Samoc et al. have studied the nonlinear refractive index and the twophoton absorption coefficient of native (sodium salt) DNA [6]. Second harmonic generation of DNA assemblies in the form of DNACTMA has been characterized both theoretically and experimentally by Wanapun et al. [7]. Krupka et al. investigated the thirdorder nonlinear optical properties of thin films of DNAbased complexes with optical third harmonic generation technique [8]. Nonlinear optical properties of different materials based on DNA are under investigation currently.
In this paper, we theoretically propose and analyze some nonlinear optical properties in a DNAquantum dot coupling system, which have remained unexplored to date. We investigate DNA molecules coupled to the peptide quantum dot with the optical pumpprobe technique. This technique has been realized by several groups [913], which shows the probability for experimental realization. Since photodetection technology is well developed, for instance with the assistance from quantum dot [14], we can expect to observe some properties of DNA molecules by detecting the weak probe beam. However, toxicity should always be cared about when DNA molecules are used together with nanomaterials as has been tested in [15], so a problem we need to pay attention to is that the metallic quantum dots used in biological assays are always toxic. Recently, Amdursky et al. [16,17] have shown that the peptide quantum dot is nontoxic to the environment and biological tissues. This kind of quantum dot is a good choice of new labeling materials in biological and biomedical experiments. Most recently, the coherent optical spectrum in such a quantum dotDNA system has been studied by Li and Zhu [18].
In the system, the vibration mode of DNA molecules makes a great contribution to this coupled system so that the optical Kerr effect can be enhanced significantly. This optical Kerr effect can also be switched by adjusting the intensity of the pump beam while leaving the other parameters unchanged. In view of these novel properties, we propose a method to measure the frequency of the vibration mode of DNA molecules.
Methods
To understand our system, we consider one of the large amount of DNAquantum dots (DNAQDs) in actual reagent as shown in Figure 1. The DNAQD system is driven by a strong pump field and a weak probe field. A twolevel system (the ground state g > and the excited state ex > ) can be chosen as the model for quantum dot, which are dressed by the DNA vibration mode as shown in Figure 1. This twolevel system can be described with the pseudospin 1 and the corresponding operators are σ_{ + }, σ_{ − } and σ_{z}. The Hamiltonian of quantum dot can be written as , where ω_{eg} = ω_{ex} − ω_{g} is the exciton frequency of quantum dot.
Figure 1. DNA and peptide quantum dot coupling system. A peptide QD coupled to DNA molecules in the simultaneous presence of two optical fields. The energy levels of QD when dressing the vibrational modes of DNA molecules are also shown in this figure.
The DNA molecules in our study are modeled as harmonic oscillators [19] and almost have no difference between them, which is not difficult to realize with biological techniques. The Hamiltonian of DNA molecules is
where the commutation relation is satis fied [20].
The damping of the longitudinal vibration mode of the DNA molecules is fairly small in a small volume of aqueous solution [20], though the DNA vibrational modes decay quickly. Therefore, in small volume of aqueous solution, the only vibration mode we care about is the longitudinal vibration mode. In addition, flexion of DNA molecules will result in extensions and compressions of the model, which will finally lead to the modification of the quantum dot levels through the longitudinal strain [21,22]. The Hamiltonian caused by the coupling of DNA molecules and a quantum dot has the form as follows:
where κ_{j} is the coupling strength between quantum dot and the jth DNA molecule, and the quantum dot is coupled to n DNA molecules. Because of the diluted aqueous solution of DNA molecules, we do not take the coupling between DNA molecules into consideration [20].
The coupling between QD and optical fields is
where μ is the electric dipole moment of the exciton and E_{p}(E_{s}) and ω_{p}(ω_{s}) are the amplitude and frequency of the pumpprobe field, respectively.
Now we get the Hamiltonian of the QDDNA system,
In the rotating frame at ω_{p}, the Hamiltonian becomes
where Δ_{p} = ω_{eg}−ω_{p}, , is the Rabi frequency and δ = ω_{s} − ω_{c}is the probepump detuning.
With this Hamiltonian, we can obtain the equations of motion for σ_{z}, σ_{−}, and ϑ via Heisenberg equation and introduce some damping parameters such as Γ_{1}, Γ_{2} and τ_{D}[23]. Γ_{1} is the exciton relaxation rate and Γ_{2} is the dephasing rate. τ_{D} is the vibrational lifetime of DNA. By introducing the corresponding damping and noise terms [24,25], the equations are as follows:
where is the coupling strength of DNA molecules and quantum dot. ω_{D} is the frequency of DNA longitudinal vibrational modes. The δcorrelated Langevin noise operator F_{n} represents the coupling between ϑ and σ_{−}, the main cause of the decay of vibration mode. F_{n}has zero mean value < F_{n} > = 0 and the correlation relation . The operator ξ_{n}stands for the Brownian stochastic force, since the thermal bath of Brownian and nonMarkovian processes will affect the vibration mode of DNA molecules [24,26]. The quantum effects on the DNA are only observed in the case ω_{D}τ_{D} > > 1. The Brownian noise operator can be modeled as Markovian with the decay rate 1/_{τD} of the vibration mode. Therefore, the Brownian stochastic force has zero mean value < ξ_{n} > = 0 and can be expressed as [26]
With the standard methods of quantum optics, the steadystate solution of Equations 6, 7, and 8 are expressed as follows when setting all the time derivatives to zero:
where σ_{0z} is determined by Equation 15. To extend this formalism beyond weak coupling, we can always rewrite each Heisenberg operator as the sum of its steadystate mean value and a small fluctuation with zero mean value as follows: σ_{−} = σ_{0} + δσ_{−}, σ_{z} = σ_{0z} + δσ_{z}, and ϑ = ϑ_{0} + δϑ, which should be substituted into Equations 6, 7, and 8. We can neglect the nonlinear term δϑδσ_{−} safely. Since the optical drives are weak and classical, we will identify all the operators with their expectation values and omit the quantum and thermal noise terms [9]. Then the linearized Langevin equations can be written as follows:
From the approximations , and < δϑ > = ϑ^{ + }exp(−iδt) + ^{ϑ−}exp(iδt) [27], we can obtain:
Now we get σ_{0z}. Then σ_{0}and ϑ_{0} are also known. All of the equations can then be solved completely. We finally obtain the part we are interested in, the equation:
where the equations used are , , F(δ) = (σ_{0}G + 2Ω_{p})/(iΓ_{2} + δ − Δ_{p} − ϑ_{0}), , ϑ_{0} = −λσ_{0z} and finally
We can use the equations above and to obtain the nonlinear optical susceptibility:
Results and discussion
To show the numerical results, we choose the realistic quantum dotDNA system, in which a peptide quantum dot is coupled to several DNA molecules as illustrated in Figure 1. Although the DNA molecules in solution form can be distorted in mess, one can extend these molecules into linear form with electromagnetic field or fluid force [28]. In addition, the longitudinal vibrational frequency can be affected by the length of DNA molecules, which could just be considered as a factor affecting vibration frequency. In the theoretical calculation, we choose ω_{D} = 40 GHz and τ_{D} = 5 ns as the vibration frequency and lifetime of DNA molecules [22,2931]. For our study, we can safely select the decay rate of the peptide quantum dot as Γ_{1} = 16 GHz for any practical purpose [32].
Figure 2a plots the optical Kerr coefficient (solid curve) and nonlinear absorption (dash curve) as functions of probeexciton detuning Δ_{s} = ω_{s} − ω_{eg} with Δ_{p} = 0 and λ = 0, while Figure 2b shows optical Kerr coefficient (solid curve) and nonlinear absorption (dash curve) as functions of probeexciton detuning Δ_{s} = ω_{s} − ω_{eg}with Δ_{p} = 0 but λ = 2 GHz. It demonstrates that if we fix the pump beam onresonance with the exciton frequency and scan the probe beam, we can obtain the large enhanced optical Kerr effect at ω_{s} = ω_{eg} − ω_{D} and ω_{s} = ω_{eg} + ω_{D}. The origin of this phenomenon is the quantum interference between the vibration mode of DNA molecules and the beat of the two optical fields via the exciton when probepump detuning δis adjusted equal to the frequency of the vibration mode of DNA molecules. If we ignore the coupling, λ = 0, the enhancement of optical Kerr effect will disappear completely as has been demonstrated in Figure 2a. Therefore, the importance of the coupling between quantum dot and DNA molecules is obvious since the enhancement of optical Kerr effect could not occur in such a system when λ = 0. Furthermore, we can propose a scheme to measure the frequency of the vibration mode of DNA molecules by making use of the phenomenon above. From Figure 2b, we can clearly see that as the frequency of the vibration mode is ω_{D} = 40 GHz, the two sharp peaks at ±40 GHz just match the mode frequency. This means that if we first adjust pump beam properly and scan the probe frequency across the exciton frequency in the spectrum, we can easily obtain the accurate vibration frequency of DNA, which implies some future potential applications.
Figure 2. The optical Kerr coefficient of probe beam (in units of∑_{m}) with pump beam onresonance. (a) The optical Kerr coefficient and nonlinear absorption as functions of probeexciton detuning Δ_{s} in the case λ=0. (b) The optical Kerr coefficient and nonlinear absorption as functions of probeexciton detuning Δ_{s} in the case λ = 2 GHz.
To explore the phenomenon above more carefully, we show the optical Kerr coefficient as functions of probeexciton detuning Δ_{s} = _{ωs}−_{ωeg}with _{Δp} = 0 and different coupling strengths and vibration lifetimes in Figure 3a,b respectively. In Figure 3a, we see that the larger the coupling strength is, the higher the optical Kerr coefficient peak will be. Figure 4a shows that the optical Kerr coefficient peak increases monotonously with vibration lifetime τ_{D}. We should not feel surprised about these results. Since the optical Kerr coefficient peak is caused by the coupling between DNA molecules and quantum dot, the peak will become more and more obvious when the coupling makes stronger. These results demonstrate that the coupling plays a key role in such a coupled system.
Figure 3. Optical Kerr coefficient of probe beam with various coupling strengths and vibration lifetimes. (a) The optical Kerr coefficient (in units of ∑_{m}) as functions of probeexciton detuning Δ_{s} with pump beam onresonance (Δ_{p} = 0) and different coupling strengths. (b) The optical Kerr coefficient (in units of ∑_{m}) as functions of probeexciton detuning Δ_{s} with pump beam onresonance (Δ_{p} = 0) and different vibration lifetimes.
Figure 4. Optical Kerr coefficient of probe beam with various Rabi frequencies of pump beam. (a) The optical Kerr coefficient (in units of ∑_{m}) as functions of probeexciton detuning Δ_{s} with pump beam offresonance(Δ_{p} = ω_{D}) and different Rabi frequencies. (b) The detailed part of (a) showed the relation between optical Kerr coefficient and Rabi frequency>
Figure 4a presents optical Kerr effects as functions of Δ_{s} with Δ_{p} = ω_{D} and different Rabi frequencies of the pump field, whose detail is shown in Figure 4a. We first notice that the probe beam experiences different optical Kerr coefficients when appearing in the pump beams with different intensities. When we pay attention to the detail (shown in Figure 4a), we find that by increasing the intensity of the pump beam, the optical Kerr effect will be weakened significantly. Therefore, we can see that the magnitude of optical Kerr effect can be tuned by controlling the light intensity, implying a method for regulating the nonlinear optical features of DNAs via coupling to quantum dots.
Conclusions
In conclusion, we have proposed a theoretical model for DNAquantum dot hybrid system in the presence of a strong pump laser and a weak probe laser. The coupling leads to the great enhancement of probe beam Kerr coefficient at two offresonant points, which may be of potential use in frequency measurement. Furthermore, the relation between the optical Kerr coefficient of the probe beam and intensity of the pump beam may be utilized to control the strength of optical nonlinearity of the system. We believe that such a phenomenon may lead to a more profound understanding of nonlinear optical properties of the hybrid quantum dotDNA system. We expect our consequences can be checked experimentally in the near future.
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
YL finished the main work of this article, including deducing the formulas, plotting the figures, and drafting the manuscript. KDZ conceived of the idea, provided some useful suggestion, and participated in the coordination. Both authors read and approved the final manuscript.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (numbers 10974133 and 11274230) and the Ministry of Education Program for Ph.D.
References

Robinson BH, Seeman NC: The design of a biochip: a selfassembling molecularscale memory device.
Protein Eng 1987, 1:295300. PubMed Abstract  Publisher Full Text

Yan H, Zhang XP, Shen ZY, Seeman NC: A robust DNA mechanical device controlled by hybridization topology.
Nature 2002, 415:6265. PubMed Abstract  Publisher Full Text

Birendra ST, Serdar SN, James GG: Bioorganic optoelectronic devices using DNA.

Yu Z, Li W, Hagen JA, Zhou Y, Klotzkin D, Grote JG, Steckl AJ: Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine.
Appl Opt 2007, 46:15071513. PubMed Abstract  Publisher Full Text

Samoc M, Samoc A, Grote JG: Complex nonlinear refractive index of DNA.
Chem Phys Lett 2006, 431:132134. Publisher Full Text

Wanapun D, Hall VJ, Begue NJ, Grote JG, Simpson GJ: DNAbased polymers as chiral templates for secondorder nonlinear optical materials.
Chem Phys Chem 2009, 10:26742678. PubMed Abstract  Publisher Full Text

Krupka O, Ghayoury AE, Rau I, Sahraoui B, Grote JG, Kajzar F: NLO properties of functionalized DNA thin films.
Thin Sol Films 2008, 516:89328936. Publisher Full Text

Weis S, Rivieere R, Deleeglise S, Gavartin E, Arcizet O, Schliesser A, Kipperberg TJ: Optomechanically induced transparency.
Science 2010, 330:15201523. PubMed Abstract  Publisher Full Text

Teufel JD, Li D, Allman MS, Cicak K, Sirois AJ, Whittaker JD, Simmonds RW: Circuit cavity electromechanics in the strongcoupling regime.
Nature 2011, 471:204208. PubMed Abstract  Publisher Full Text

SafaviNaeini AH, Alegre TPM, Chan J, Eichenfield M, Winger M, Lin Q, Hill JT, Chang DE, Painter O: Electromagnetically induced transparency and slow light with optomechanics.
Nature 2011, 472:6973. PubMed Abstract  Publisher Full Text

Li JJ, Zhu KD: A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonatorquantum dto system.
Appl Phys Lett 2009, 94:063116. Publisher Full Text

He W, Li JJ, Zhu KD: Couplingrate determination based on radiation pressureinduced normal mode splitting in cavity optomechanical systems.
Opt Lett 2010, 35:339341. PubMed Abstract  Publisher Full Text

Thomas G: Injector quantum dot molecule infrared photodetector: a concept for efficient carrier injection.

S.Karthick RN, Gnanendra KE, Reepika R: Synthesis of silver nanoparticles by Lactobaciluus acidophilus 01 strain and evaluation of its in vitro genomic DNA toxicity.

Amdursky N, Molotskii M, Gazit E, Rosenman G: Selfassembled bioinspired quantum dots: optical properties.
Appl Phys Lett 2009, 94:261907. Publisher Full Text

Amdursky N, Molotskii M, Gazit E, Rosenman G: Elementary building blocks of selfassembled peptide nanotubes.
J Am Chem Soc 2010, 132:1563215636. PubMed Abstract  Publisher Full Text

Li JJ, Zhu KD: Coherent optical spectroscopy in a biological semiconductor quantum dotDNA hybrid system.
Nano Res Lett 2012, 7:17. BioMed Central Full Text

Van Zandt LL: Resonant microwave absorption by dissolved DNA.
Phys Rev Lett 1986, 57:20852087. PubMed Abstract  Publisher Full Text

Dorfman BH: The effects of viscous water on the normal mode vibrations of DNA.

Edwards GS, Davis CC, Saffer JD, Swicord ML: Resonant microwave absorption of selected DNA molecules.
Phys Rev Lett 1984, 53:12841287. Publisher Full Text

Edwards GS, Davis CC, Saffer JD, Swicord ML: Microwavefielddriven acoustic modes in DNA.
Biophys J 1985, 47:799807. PubMed Abstract  Publisher Full Text  PubMed Central Full Text

Donega CM, Bode M, Meijerink A: Size and temperaturedependence of exciton lifetimes in CdSe quantum dots.

Gardiner CW, Zoller P: Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate.

Milburn GJ, Jacobs K, Walls DF: Quantumlimited measurements with the atomic force microscope.
Phy Rev A 1994, 50:52565263. Publisher Full Text

Giovannetti V, Vitali D: Phasenoise measurement in a cavity with a movable mirror undergoing quantum Brownian motion.

Marko JF, Siggia ED: Stretching DNA.
Macromolecules 1995, 28:87598770. Publisher Full Text

Yuan CL, Chen HM, Lou XW, Archer LA: DNA bending stiffness on small length scales.
Phys Rev Lett 2008, 100:018102. PubMed Abstract  Publisher Full Text

Gill R, Willner I, Shweky I, Banin U: Fluorescence resonance energy transfer in CdSe/ZnSDNA conjugates: probing hybridization and DNA cleavage.
J Phys Chem B 2005, 109:2371523719. PubMed Abstract  Publisher Full Text

Adai BK: Vibrational resonances in biological systems at microwave.
Biophys J 2002, 82:11471152. PubMed Abstract  Publisher Full Text  PubMed Central Full Text

Tsay MJ, Trzoss M, Shi LX, Kong XX, Selke M, Jung EM, Weiss S: Singlet oxygen production by peptidecoated quantum dotphotosensitizer conjugates.
Am Chem Soc 2007, 129:68656871. Publisher Full Text