SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Highly Accessed Nano Express

Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications

Yang Gao12, Gaind P Pandey2*, James Turner3, Charles R Westgate2 and Bahgat Sammakia3

Author affiliations

1 Mechanical Engineering Department, Binghamton University, State University of New York, Binghamton, NY, 13902, USA

2 Center for Autonomous Solar Power (CASP), Binghamton University, State University of New York, Binghamton, NY, 13902, USA

3 Small Scale Systems Integration and Packaging Center (S3IP), Binghamton University, State University of New York, Binghamton, NY, 13902, USA

For all author emails, please log on.

Citation and License

Nanoscale Research Letters 2012, 7:651  doi:10.1186/1556-276X-7-651

Published: 27 November 2012

Abstract

Entangled carbon nanofibers (CNFs) were synthesized on a flexible carbon fabric (CF) via water-assisted chemical vapor deposition at 800°C at atmospheric pressure utilizing iron (Fe) nanoparticles as catalysts, ethylene (C2H4) as the precursor gas, and argon (Ar) and hydrogen (H2) as the carrier gases. Scanning electron microscopy, transmission electron microscopy, and electron dispersive spectroscopy were employed to characterize the morphology and structure of the CNFs. It has been found that the catalyst (Fe) thickness affected the morphology of the CNFs on the CF, resulting in different capacitive behaviors of the CNF/CF electrodes. Two different Fe thicknesses (5 and 10 nm) were studied. The capacitance behaviors of the CNF/CF electrodes were evaluated by cyclic voltammetry measurements. The highest specific capacitance, approximately 140 F g−1, has been obtained in the electrode grown with the 5-nm thickness of Fe. Samples with both Fe thicknesses showed good cycling performance over 2,000 cycles.

Keywords:
Carbon nanofibers; Carbon fabric; Water-assisted chemical vapor deposition; Supercapacitor; Cyclic voltammetry