Table 1

The bandgaps and the relative bandgap correction <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/624/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/624/mathml/M3">View MathML</a> of 16 sp semiconductors and the predicted α-g-B3N3C
Solid LDA MBJ <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/624/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/624/mathml/M4">View MathML</a> Expt.
C 4.11 4.93 16.6 5.48
Si 0.47 1.17 59.8 1.17
Ge 0.00 0.85 100.0 0.74
LiF 8.94 12.94 30.9 14.20
LiCl 6.06 8.64 29.9 9.40
MgO 4.70 7.17 34.4 7.83
ScN −0.14 0.90 115.6 0.90
SiC 1.35 2.28 40.8 2.40
BN 4.39 5.85 25.0 6.25
GaN 1.63 2.81 42.0 3.20
GaAs 0.30 1.64 81.7 1.52
AlP 1.46 2.32 37.1 2.45
ZnS 1.84 3.66 49.7 3.91
CdS 0.86 2.66 67.7 2.42
AlN 4.17 5.55 24.9 6.28
ZnO 0.75 2.68 72.0 3.44
α-g-B3N3C 0.83 1.22 32.0

The theoretical and experimental bandgaps (in eV) of the 16 sp semiconductors are directly taken from [25]. The relative bandgap correction <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/624/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/624/mathml/M5">View MathML</a> (in %) is calculated from the equation <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/624/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/624/mathml/M6">View MathML</a>, where ΔMBJ and ΔLDA are the calculated bandgaps using XC potentials MBJ and LDA.

Li et al.

Li et al. Nanoscale Research Letters 2012 7:624   doi:10.1186/1556-276X-7-624

Open Data