Table 1

Calculated electroaccepting power, ω+s, in aqueous solution and the absolute reduction potential, E°abs

Mz+

μbatha

μ+ b

η+ b

ΔN+g, max

ΔGhyd

Δω+

ω+s

zE°absc


Li+

-4.044

-22.954

35.124

0.538

-481

-2.053

5.214

1.223

Na+

-3.854

-15.677

21.075

0.561

-375

-1.466

4.013

1.550

K+

-3.255

-11.163

13.645

0.580

-304

-1.116

3.062

1.339

Rb+

-3.133

-9.953

11.551

0.590

-281

-0.998

2.865

1.339

Cs+

-2.920

-9.195

10.603

0.592

-258

-0.912

2.673

1.340

Ag+

-5.682

-11.055

6.957

0.772

-440

-1.108

5.354

5.062

Cu+

-5.795

-10.867

6.282

0.807

-535

-1.294

5.433

4.783

Tl+

-4.581

-9.688

7.160

0.713

-310

-0.847

4.242

3.923

In+

-4.340

-9.057

6.542

0.721

-296

-0.799

4.032

4.123

Be2+

-6.992

-52.133

67.843

0.665

-2404

-10.787

8.883

4.546

Mg2+

-5.735

-31.313

32.554

0.786

-1838

-7.780

6.774

3.814

Ca2+

-4.585

-21.632

19.521

0.873

-1515

-6.187

5.260

2.846

Sr2+

-4.271

-18.995

15.930

0.924

-1386

-5.567

5.185

2.746

Ba2+

-3.909

-16.378

12.748

0.978

-1258

-4.963

4.958

2.686

V2+

-5.060

-18.291

7.347

1.801

-1825

-6.841

14.187

6.266

Cr2+

-5.075

-20.105

7.237

2.077

-1860

-7.206

18.940

6.726

Mn2+

-5.576

-20.147

9.014

1.617

-1770

-6.634

14.157

6.186

Fe2+

-5.927

-19.804

7.232

1.919

-1848

-6.711

17.976

7.646

Co2+

-5.911

-21.188

8.208

1.861

-1922

-7.181

18.037

7.972

Ni2+

-5.730

-22.424

8.511

1.962

-1998

-7.708

19.906

8.012

Cu2+

-5.795

-24.429

8.275

2.252

-2016

-7.969

26.064

9.206

Zn2+

-7.046

-23.405

10.879

1.504

-1963

-7.110

15.784

7.001

Cd2+

-6.745

-22.051

10.286

1.488

-1736

-6.244

15.180

7.720

Hg2+

-7.828

-22.618

7.722

1.915

-1766

-5.984

23.174

10.234

Sn2+

-5.508

-18.600

7.936

1.650

-1496

-5.457

14.429

8.251

Pb2+

-5.562

-19.258

8.453

1.620

-1434

-5.285

14.824

8.274

Pd2+

-6.253

-22.805

6.750

2.452

-1920

-7.222

28.406

10.356

Sm2+

-4.233

-14.153

6.165

1.609

-1375

-4.994

9.797

3.186

Eu2+

-4.253

-14.668

6.835

1.524

-1391

-5.118

9.296

2.926

Yb2+

-4.691

-15.395

6.437

1.663

-1510

-5.441

11.259

2.926

Al3+

-4.489

-51.334

45.772

1.023

-4531

-21.427

7.139

7.761

Ga3+

-4.499

-39.033

16.645

2.075

-4521

-20.728

24.430

11.202

In3+

-4.340

-34.523

12.985

2.324

-3989

-18.073

27.093

11.775

Sc3+

-4.921

-36.940

24.366

1.314

-3801

-17.073

10.431

6.699

Y3+

-4.663

-30.539

20.039

1.291

-3457

-15.179

7.550

5.679

La3+

-4.183

-26.870

15.386

1.475

-3155

-13.805

9.090

5.649

Fe3+

-5.927

-36.689

12.074

2.548

-4271

-18.557

35.731

12.669

Co3+

-5.911

-37.950

8.900

3.600

-4503

-19.701

59.247

14.148

Au3+

-6.919

-41.575

8.350

4.150

-4416

-19.075

81.561

17.349


a<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/6/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/6/mathml/M20">View MathML</a> because of the neglectable values of electron affinities, AM, for atoms. b μ+ and η+ are obtained from Equation 3a. c The product of the charge number, z, and the absolute reduction potential, E°abs. The values of E°abs are calculated form Equation 18 where the absolute standard hydrogen electrode potential, E°SHE = 0, is 4.263 eV according to Marcus [21].

Li et al. Nanoscale Research Letters 2012 7:6   doi:10.1186/1556-276X-7-6

Open Data