Open Access Nano Express

Multiscale model to investigate the effect of graphene on the fracture characteristics of graphene/polymer nanocomposites

Avinash Parashar and Pierre Mertiny*

Author affiliations

University of Alberta, 4-9 Mechanical Engineering Building, Edmonton, Alberta, T6G 2G8, Canada

For all author emails, please log on.

Citation and License

Nanoscale Research Letters 2012, 7:595  doi:10.1186/1556-276X-7-595

Published: 26 October 2012


In this theoretical research work, the fracture characteristics of graphene-modified polymer nanocomposites were studied. A three-dimensional representative volume element-based multiscale model was developed in a finite element environment. Graphene sheets were modeled in an atomistic state, whereas the polymer matrix was modeled as a continuum. Van der Waals interactions between the matrix and graphene sheets were simulated employing truss elements. Fracture characteristics of graphene/polymer nanocomposites were investigated in conjunction with the virtual crack closure technique. The results demonstrate that fracture characteristics in terms of the strain energy release rate were affected for a crack lying in a polymer reinforced with graphene. A shielding effect from the crack driving forces is considered to be the reason for enhanced fracture resistance in graphene-modified polymer nanocomposites.

Nanocomposite; Polymers; Fracture; Finite element analysis