Abstract
We consider a model of hydrogenlike artificial molecule formed by two vertically coupled quantum dots in the shape of axially symmetrical thin layers with onaxis single donor impurity in each of them and with the magnetic field directed along the symmetry axis. We present numerical results for energies of some lowlying levels as functions of the magnetic field applied along the symmetry axis for different quantum dot heights, radii, and separations between them. The evolution of the AharonovBohm oscillations of the energy levels with the increase of the separation between dots is analyzed.
Keywords:
Quantum dots; Adiabatic approximation; Artificial molecule; PACS; 78.67.n; 78.67.Hc; 73.21.bBackground
An important feature in lowdimensional systems is the electronelectron interaction because it plays a crucial role in understanding the electrical transport properties of quantum dots (QDs) at low temperatures [1]. Such systems may involve small or large numbers of electrons as well as being confined in one or more dimensions. The number of electrons in a QD can be varied over a considerable range. It is possible to control the size and the number of electrons and to observe their spatial distributions in QDs. Energy spectrum of twoelectron QD with a parabolic confinement, for which twoparticle wave equation can be separated completely, has been analyzed previously by using different methods [25].
In the present work, we propose another exactly solvable twoelectron heterostructure in which two separated electrons are confined in vertically coupled QDs with a special lenslike morphology. Together with two onaxis donors, these two electrons generate an artificial hydrogenlike molecule whose properties can be controlled by varying the geometric parameters and the strength of the magnetic field applied along the symmetry axis.
Methods
The model which we analyze below consists of two identical, axially symmetrical and vertically coupled QDs with the onaxis donor located in each one of them (see Figure 1). The dimension of the heterostructure is defined by the QDs' radii R, height W, and the separation d between them along the zaxis. We assume that the QDs have a shape of very thin layers whose profiles are given by the following dependence of the thickness of the layers w on the distance ρ from the axis:
Figure 1. Scheme of the artificial hydrogenlike molecule.
Besides, for the sake of simplicity, we consider a model with infinite barrier confinement,
which is defined in cylindrical coordinates as
Given that the thicknesses of the layers are much smaller than their lateral dimensions, one can take advantage of the adiabatic approximation in order to exclude from consideration the rapid particle motions along the zaxis [6,7] and obtain the following expression for effective Hamiltonian in polar coordinates:
The effective Bohr radius
The wave function is factorized into two parts,
where the first term represents the wellknown expression for the exact energy levels
of a twodimensional harmonic oscillator, labeled by the radial
In our numerical, work the trigonometric sweep method [8] is used to solve this equation.
Results and discussion
Before the results are shown and discussed, it is useful to specify the labeling of
quantum levels of the twoelectron molecular complex. According to Equation 4, the
energy levels
We have performed numerical calculations of energy levels of complexes with radii
R between 20 and 100 nm for different separations between layers. In all presented
calculation results, the top thickness W is taken as 0.4 nm. In order to highlight the role of the interplay between the quantum
size and correlation effects in the formation of the energy spectrum of our artificial
system different from the natural hydrogen molecular complex, we have plotted in Figure
2 the potential curves
Figure 2. Energies
We ascribe a dramatic alteration of the potential curves with the increase of the separation between QDs from 5 to 20 nm observed in Figure 2 to the interplay between the structural confinement and the electronelectron repulsion. As the QDs' radii are small(R → 0), the confinement is strong, and the kinetic energy (~1/R^{2}) is larger than the electronelectron repulsion energy (~1/R), vice versa for QDs with large radii. Therefore, as the QDs' radii increase, the arrangement of the electronic structure for different energy levels changes from typical for the gaslike system to crystallike one, accompanied by the crossovers of the curves and reordering of the levels. As the twoelectron structure arrangement for large separation between electrons becomes almost rigid, the relative motion of electrons is frozen out, and the twoelectron structure transforms into a rigid rotator with practically fixed separation between electrons. The electrons' motion in this case becomes similar to one in 1D ring, and therefore, the energy dependencies on the external magnetic field applied along the symmetry axis should be similar to those which exhibit the AharonovBohm effect.
In order to verify this hypothesis, we present in Figure 3 the calculated molecular complex energies
Figure 3. Energies
It is seen that for QD of small radius, the energies are increased smoothly with very few intersections. Such dependence is typical for gaslike systems where the paramagnetic term contribution is depreciable in comparison with the diamagnetic one. On the contrary, the energy dependency curves for QD of large radius present multiple crossovers and levelordering inversion as the magnetic field strength increases from 0 to 1. It is due to a competition between diamagnetic (positive) and paramagnetic (negative) terms of the Hamiltonian whose contributions in total twoelectron energy in QDs of large radii are of the same order while the electron arrangement is similar to a rigid rotator. In other words, the correlation in this case becomes as strong as the electrons are mainly located on the opposite sides within a narrow ringlike region.
Finally, in Figures 4 and 5, we present results of the calculation of the density of electronic states for doubledonor molecular complex confined in vertically coupled QDs. It is clear from the discussion above that the presence of the magnetic field should provide a significant change of the density of the electronic states as the QDs' radii are sufficiently large. Indeed, it is seen from Figure 4 that under relatively weak magnetic field (γ = 0.5), as the molecular complex is confined in QDs of 100nm with 6nm separation between them, the density of states becomes essentially more homogeneous since the widths of individual lines are broadened and the gaps between them are reduced. Such change of the density of states is observed due to a splitting and displacement of the individual lines accompanied by their crossovers and the reordering of the energy levels.
Figure 4. Density of states for two different values of the magnetic field. Corresponding to lowlying levels of the doubledonor complex in vertically coupled QDs.
Figure 5. Density of states for three different distances between layers. Corresponding to lowlying levels of the doubledonor complex in vertically coupled QDs.
In Figure 5, we present similar curves of the molecular complex density of states for three different separations between QDs. It is seen that the curves of the density of states are modified only slightly, essentially less than under variation of the magnetic field. Particularly, the lower energy peak positions are almost insensitive to any change of the distance between dots, while the upper energy peaks are noticeably displaced toward higher energy regions.
Conclusions
In short, we propose a simple numerical procedure for calculating the energies and wave functions of a molecular complex formed by two separated onaxis donors located at vertically coupled quantum dots with a particular lenstype morphology which produces inplane parabolic confinement. We show that in the adiabatic approximation, the Hamiltonian of this twoelectron system included in the presence of the external magnetic field is separable. The curves of the energy dependencies on the external magnetic field and the separation between quantum dots are presented. Analyzing the curves of the lowlying energies as functions of the magnetic field applied along the symmetry axis, we find that the twoelectron configuration evolves from one similar to a rigid rotator to gaslike as the dot radii decrease. This quantum size effect is accompanied by a significant modification of the density of the energy states and the energy dependencies on the external magnetic field and geometric parameters of the structure.
Competing interests
The authors declare that they have no competing interests
Authors' contributions
All authors contributed equally to this work. JSO created the analytic model with contributions from IM, RMG, and JMT. GES performed the numerical calculations and wrote the manuscript. All authors discussed the results and implications, commented on the manuscript at all stages, and read and approved the final manuscript.
Acknowledgments
This work was financed by the Universidad del Magdalena through the Vicerrectoría de Investigaciones (Código 01).
References

Kramer B: Proceedings of a NATO Advanced Study Institute on Quantum Coherence in Mesoscopic System: 1990 April 213; Les Arcs, France. New York: Plenum; 1991.

Maksym PA, Chakraborty T: Quantum dots in a magnetic field: role of electron–electron interactions.
Phys Rev Lett 1990, 65:108111. PubMed Abstract  Publisher Full Text

Pfannkuche D, Gudmundsson V, Maksym P: Comparison of a Hartree, a HartreeFock, and an exact treatment of quantumdot helium.
Phys Rev B 1993, 47:22442250. Publisher Full Text

Zhu JL, Yu JZ, Li ZQ, Kawasoe Y: Exact solutions of two electrons in a quantum dot.
J Phys Condens Matter 1996, 8:7857. Publisher Full Text

Mikhailov ID, Betancur FJ: Energy spectra of two particles in a parabolic quantum dot: numerical sweep method.
Phys stat sol (b) 1999, 213:325332. Publisher Full Text

Peeters FM, Schweigert VA: Twoelectron quantum disks.
Phys Rev B 1996, 53:14681474. Publisher Full Text

Mikhailov ID, Marín JH, García F: Offaxis donors in quasitwodimensional quantum dots with cylindrical symmetry.
Phys stat sol (b) 2005, 242(8):16361649. Publisher Full Text

Betancur FJ, Mikhailov ID, Oliveira LE: Shallow donor states in GaAs(Ga, Al)As quantum dots with different potential shapes.
J Appl Phys D 1998, 31:3391. Publisher Full Text