Open Access Nano Express

Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging

Suk Hyun Jung, Kyunga Na, Seul A Lee, Sun Hang Cho, Hasoo Seong and Byung Cheol Shin*

Author Affiliations

Research Center for Medicinal Chemistry, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Deajeon, 305-600, South Korea

For all author emails, please log on.

Nanoscale Research Letters 2012, 7:462  doi:10.1186/1556-276X-7-462

Published: 17 August 2012

Abstract

Ultrasound-sensitive (sonosensitive) liposomes for tumor targeting have been studied in order to increase the antitumor efficacy of drugs and decrease the associated severe side effects. Liposomal contrast agents having Gd(III) are known as a nano-contrast agent system for the efficient and selective delivery of contrast agents into pathological sites. The objective of this study was to prepare Gd(III)-DOTA-modified sonosensitive liposomes (GdSL), which could deliver a model drug, doxorubicin (DOX), to a specific site and, at the same time, be capable of magnetic resonance (MR) imaging. The GdSL was prepared using synthesized Gd(III)-DOTA-1,2-distearoyl-sn-glycero-3-phosphoethanolamine lipid. Sonosensitivity of GdSL to 20-kHz ultrasound induced 33% to 40% of DOX release. The relaxivities (r1) of GdSL were 6.6 to 7.8 mM−1 s−1, which were higher than that of MR-bester®. Intracellular uptake properties of GdSL were evaluated according to the intensity of ultrasound. Intracellular uptake of DOX for ultrasound-triggered GdSL was higher than that for non-ultrasound-triggered GdSL. The results of our study suggest that the paramagnetic and sonosensitive liposomes, GdSL, may provide a versatile platform for molecular imaging and targeted drug delivery.

Keywords:
Liposome; Ultrasound sensitivity; Contrast agent; Intracellular uptake; Doxorubicin