Open Access Nano Express

Se-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors

Leonardo Viti, Miriam S Vitiello*, Daniele Ercolani, Lucia Sorba and Alessandro Tredicucci

Author Affiliations

NEST, Istituto Nanoscienze-Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy

For all author emails, please log on.

Nanoscale Research Letters 2012, 7:159  doi:10.1186/1556-276X-7-159

Published: 28 February 2012


We investigated the transport properties of lateral gate field effect transistors (FET) that have been realized by employing, as active elements, (111) B-oriented InAs nanowires grown by chemical beam epitaxy with different Se-doping concentrations. On the basis of electrical measurements, it was found that the carrier mobility increases from 103 to 104 cm2/(V × sec) by varying the ditertiarybutyl selenide (DtBSe) precursor line pressure from 0 to 0.4 Torr, leading to an increase of the carrier density in the transistor channel of more than two orders of magnitude. By keeping the DtBSe line pressure at 0.1 Torr, the carrier density in the nanowire channel measures ≈ 5 × 1017 cm-3 ensuring the best peak transconductances (> 100 mS/m) together with very low resistivity values (70 Ω × μm) and capacitances in the attofarad range. These results are particularly relevant for further optimization of the nanowire-FET terahertz detectors recently demonstrated.

PACS: 73.63.-b, 81.07.Gf, 85.35.-p

nanowires; Se-doping; field effect transistors; transport; InAs