Open Access Open Badges Nano Express

Kinetic nanofriction: a mechanism transition from quasi-continuous to ballistic-like Brownian regime

Mehdi Jafary-Zadeh1, Chilla Damodara Reddy2, Viacheslav Sorkin2 and Yong-Wei Zhang2*

Author Affiliations

1 Department of Materials Science and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260, Singapore

2 Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16 Connexis North Tower, Singapore, 138632, Singapore

For all author emails, please log on.

Nanoscale Research Letters 2012, 7:148  doi:10.1186/1556-276X-7-148

Published: 21 February 2012


Surface diffusion of mobile adsorbates is not only the key to control the rate of dynamical processes on solid surfaces, e.g. epitaxial growth, but also of fundamental importance for recent technological applications, such as nanoscale electro-mechanical, tribological, and surface probing devices. Though several possible regimes of surface diffusion have been suggested, the nanoscale surface Brownian motion, especially in the technologically important low friction regimes, remains largely unexplored. Using molecular dynamics simulations, we show for the first time, that a C60 admolecule on a graphene substrate exhibits two distinct regimes of nanoscale Brownian motion: a quasi-continuous and a ballistic-like. A crossover between these two regimes is realized by changing the temperature of the system. We reveal that the underlying physical origin for this crossover is a mechanism transition of kinetic nanofriction arising from distinctive ways of interaction between the admolecule and the graphene substrate in these two regimes due to the temperature change. Our findings provide insight into surface mass transport and kinetic friction control at the nanoscale.