SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

This article is part of the series Nano and Giga Challenges 2011.

Open Access Nano Express

Graphene bilayer structures with superfluid magnetoexcitons

Alexandr A Pikalov and Dmitrii V Fil*

Author Affiliations

Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin ave. 60, Kharkov 61001, Ukraine

For all author emails, please log on.

Nanoscale Research Letters 2012, 7:145  doi:10.1186/1556-276X-7-145

The electronic version of this article is the complete one and can be found online at: http://www.nanoscalereslett.com/content/7/1/145

Received:1 October 2011
Accepted:21 February 2012
Published:21 February 2012

© 2012 Pikalov and Fil; licensee Springer.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In this article, we study superfluid behavior of a gas of spatially indirect magnetoexcitons with reference to a system of two graphene layers embedded in a multilayer dielectric structure. The system is considered as an alternative of a double quantum well in a GaAs heterostructure. We determine a range of parameters (interlayer distance, dielectric constant, magnetic field, and gate voltage) where magnetoexciton superfluidity can be achieved. Temperature of superfluid transition is computed. A reduction of critical parameters caused by impurities is evaluated and critical impurity concentration is determined.

graphene; exciton superfluidity; multilayer heterostructures

1 Introduction

Recent progress in creation of heterostructures with two graphene layers separated by a thin dielectrics [1] opens possibilities to use graphene for creation of multiple quantum well structures with separately accessed conducting layers. In [1], SiO2 substrate and Al2O3 internal dielectric layer were used. Another promising dielectric is hexagonal BN [2]. It has a number of advantages, such as an atomically smooth surface that is free of dangling bonds and charge traps, a lattice constant similar to that of graphite, and a large electronic bandgap.

The attention to graphene heterostructures is caused, in some part, by the idea to use them for a realization of superfluidity of spatially indirect excitons [3-9]. Bound electron-hole pairs cannot carry electrical charge, but in bilayers they can provide a flow of oppositely directed electrical currents. Therefore, exciton superfluidity in bilayers should manifest itself as a special kind of superconductivity--the counterflow one, that means infinite conductance under a flow of equal in modulus and oppositely directed currents in the layers.

The idea on counterflow superconductivity with reference to electron-hole bilayers was put forward in [10,11]. The attempts to observe counterflow conductivity directly were done [12-14] for bilayer quantum Hall systems realized in GaAs heterostructures. In the latter systems superconducting behavior might be accounted for magnetoexcitons [15,16]. The effect is expected for the filling factors of Landau levels <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M1">View MathML</a> is magnetic length, ni is the electron density in the ith layer) satisfying the condition ν1 + ν2 = 1. The role of holes is played by empty states in zero Landau level. In experiments [12-14], an exponential increase of the counterflow conductivity under lowering of temperature was observed, but zero-resistance state was not achieved. The latter can be explained by the presence of unbound vortices [17-19]. Such vortices may appear due to spatial variation of the electron density caused by disorder.

To demonstrate counterflow superconductivity quantum Hall bilayers should have the parameters that satisfy two additional conditions: <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M2">View MathML</a> and <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M3">View MathML</a>, where d is the interlayer distance, and <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M4">View MathML</a> is the effective Bohr radius (ε is the dielectric constant of the matrix, and m* is the effective electron mass). The first inequality comes from the dynamical stability condition. For balanced bilayers (ν1 = ν2) the mean-fields theory yields d < 1.175 ℓ. The second inequality is the condition for the Coulomb energy e2/εℓ be smaller than the energy distance between Landau levels. In GaAs <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M5">View MathML</a> and the condition <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M3">View MathML</a> is fulfilled at rather strong magnetic fields <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M6">View MathML</a> (actually, the experiments [12-14] were done at smaller fields). At <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M7">View MathML</a> the interlayer tunneling is not negligible small and may result in a locking of the bilayer for the counterflow transport at small input current [20,21]. At larger input current the system unlocks, but the state becomes nonstationary one [22-24] that is accompanied by a dissipation (the power of losses is proportional to the square of the amplitude of the interlayer tunneling [22,24]).

The idea to use graphene for the realization of electron-hole superfluidity in quantum Hall bilayers [6-9] looks very attractive. The distance between Landau Levels in monolayer graphene is proportional to the inverse magnetic length, magnetic field does not enter into the condition of smallness of the Coulomb energy, and small magnetic fields can be used. Smaller magnetic fields correspond to smaller critical temperature, but, at the same time, they correspond to larger critical d. Use of large d allows to suppress completely negative effects caused by interlayer tunneling.

In this article, we concentrated on three questions. First, we determine, in what range of internal parameters and external fields magnetoexciton superfluidity can be realized. Second, we evaluate critical temperature for pure system. Third, we consider its reduction caused by electron-impurity interaction. Our study extends the results of [8], where a system of two graphene layers embedded into a bulk dielectric matrix was considered. Here we investigate structures with one and two graphene layers situated at the surface.

2 Conditions for the electron-hole pairing in zero Landau level

Quantum Hall effect in graphene is characterized by unusual systematics of Landau levels and the additional four-fold degeneracy connected with two valleys and two spin projections [25]. The energies of Landau levels in graphene are <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M8">View MathML</a>, where N = 0, 1, 2, ..., and vF ≈ 106 m/s is the Fermi velocity. In a free standing graphene, the N = 0 Landau level is half-filled. A state with only completely filled Landau levels corresponds to a plateau at the Hall conductivity plot (dependence of σxy on electron density). A free standing graphene is just between two plateaus [26]. A given quantum states in zero Landau level is characterized by the guiding center index X and the combination of the spin and valley indexes. Below we call four possible combinations, the components, and numerate them by the index β = 1, 2, 3, 4.

We describe electron-hole pairing in zero Landau level in graphene by the wave function that is a generalization of the wave function [15] to the multicomponent case

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M9">View MathML</a>


Here <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M10">View MathML</a> is the electron creation operator (the operator that fills a given state in N = 0 Landau Level), |0〉 is the state with empty zero level, i is the layer index. The u - v coefficients satisfy the condition |uβ|2 + |vβ|2 = 0. The function (1) can be rewritten in the form

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M11">View MathML</a>


where <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M12">View MathML</a> is the hole creation operator, and the vacuum state is defined as <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M13">View MathML</a>. One can see that the function (2) is an analog of the BCS function in the Bardin-Cooper-Schrieffer theory of superconductivity.

The quantity <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M14">View MathML</a> gives the filling factor imbalance for the component β. The order parameter of the electron-hole pairing reads as <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M15">View MathML</a>. If a given component is maximally imbalanced <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M16">View MathML</a> the order parameter Δβ is equal to zero.

If a one component bilayer system is balanced, the order parameter for the electron-hole pairing is maximum. But if the number of components is even, the balance <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M17">View MathML</a> can be reached at <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M18">View MathML</a> for half of the components and <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M19">View MathML</a> for the other half. In the latter case all Δβ = 0. As is shown below, just such a state corresponds to the energy minimum. In other words, in balanced graphene bilayers electron-hole pairing does not occur.

At nonzero imbalance <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M20">View MathML</a> at least for one component <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M21">View MathML</a>, and electron-hole pairing may occur. Nonzero imbalance can be provided by electrical field directed perpendicular to the layers. Such a field can be created by a voltage difference applied between top and bottom gates (see, Figure 1).

thumbnailFigure 1. Schematic view of the system under study. C1-C4 are the contacts.

We consider the general structure "dielectric 1-graphene 1-dielectric 2-graphene 2-dielectric 3" with three different dielectric constants ε1, ε2, and ε3. Dielectrics 1 and 3 are assumed to be thick (much thicker than the distance between graphene layers d). Solving the standard electrostatic problem we obtain the Fourier components of the Coulomb interaction Vii' for the electrons located in i and i' graphene layers

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M22">View MathML</a>


<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M23">View MathML</a>


<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M24">View MathML</a>


For electrons in N = 0 Landau level in graphene the Hamiltonian of Coulomb interaction has the form

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M25">View MathML</a>


where S is the area of the system. The interaction with the gate field is described by the Hamiltonian

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M26','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M26">View MathML</a>


where Vg is the interlayer voltage created by the external gate (bare voltage).

Rewriting the wave function (1) in the form

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M27">View MathML</a>


and computing the energy in the state (8) we obtain

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M28">View MathML</a>


where W = e2d/ε22 is the energy of direct Coulomb interaction. The exchange interaction energies

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M29">View MathML</a>

determine the parameters J0 = (J11 + J22)/2 - J12 and Jz = J11 - J22. The relation between θβ and <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M30">View MathML</a> is given by equation <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M31">View MathML</a>.

Taking into account the inequalities W > J0, and J11, J22 > J12 (that can be checked directly) we find that at Vg = 0 the minimum of (9) is reached at <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M32">View MathML</a>. It indicates the absence of electron-hole pairing in balanced systems.

If Vg ≠ 0 and belongs to one of the intervals

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M33">View MathML</a>


where n = -4, -2, 0, 2, the energy minimum is reached at <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M34">View MathML</a> for one of the components. We will call such a component the active one.

Let us, for instance, consider the interval (10) with n = 0. Then the energy minimum is reached at

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M35">View MathML</a>

The case <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M36">View MathML</a> (with maximum order parameter) corresponds to the voltage

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M37">View MathML</a>


Equation (11) determines the relation between magnetic field and the gate voltage Vg. To keep <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M36">View MathML</a> the gate voltage should be varied synchronically with B. In particular, at Jz = 0 (ε1 = ε3) the quantities Vg and B are linearly related:

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M38">View MathML</a>


where α ≈ 1/137 is the fine structure constant (the relation (12) is given in SI units).

If only the gate voltage or magnetic field is varied, the order parameter (and the critical temperature) changes nonmonotonically reaching the maximum at the point determined by (11).

3 Collective mode spectrum and phase diagram

The components that belong completely to one layer do not take part in the pairing. In what follows we consider the dynamics of only the active component.

We describe the active component by the wave function

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M39">View MathML</a>


(here and below we omit the component index). Equation (13) describes the state with nonzero counterflow currents. To illustrate this statement we neglect for a moment the order parameter fluctuations <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M40">View MathML</a>.

The order parameter is determined by the equation

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M41">View MathML</a>



<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M42">View MathML</a>

is the single-particle wave function in the coordinate representation, Ly is the width of the system.

Substitution (13) into (14) yields

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M43">View MathML</a>


One can see from equation (15) that Q = (Qx, Qy) is the gradient of the phase of the order parameter.

Computing the energy in the state (13) and neglecting the fluctuations we obtain

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M44">View MathML</a>



<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M45">View MathML</a>



<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M46">View MathML</a>


Electrical currents can be found from a variation of the energy caused by a variation of the vector-potential

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M47">View MathML</a>


Here Ai is the in-plane component of the vector-potential in the layer i. To obtain the explicit expression for the variation (19) we replace the phase gradient in (16) with the gauge-invariant expression <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M48">View MathML</a>, where Apl,i is the parallel to the graphene layers component of the vector potential in the layer i. Then, using (19) one finds the currents

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M49">View MathML</a>


At small gradients Qℓ ≪ 1 equation (20) is reduced to

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M50">View MathML</a>


where coefficient of proportionality between the current and the phase gradient

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M51">View MathML</a>


is called the zero temperature superfluid stiffness (the definition is given in the following section). Since we neglect fluctuations, the expression (20) yields the current at T = 0.

Implying the fluctuations of the amplitude and the phase of the order parameter are small one can present the energy as

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M52">View MathML</a>


The quadratic in fluctuations term can be diagonalized:

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M53">View MathML</a>



<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M54">View MathML</a>


are the Fourier components of the fluctuations.

Equation (24) yields the energy of fluctuations with the wave vector directed along the x axis. The component of the matrix K can be presented in form independent of the choice of the direction of the coordinate axes

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M55">View MathML</a>


<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M56">View MathML</a>


<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M57','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M57">View MathML</a>



<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M58">View MathML</a>


<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M59">View MathML</a>


The quantities Kαβ(q) in (24) are expressed in terms of (26) as <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M60">View MathML</a>.

The quantity ħ cos θ X/2 can be treated as a z-component of the pseudospin and it is canonically conjugated with the phase φX. The Fourier transformed quantities (25) are defined as canonical variables as well. The equations of motion for the quantities mz(q) and φ(q) read as

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M61">View MathML</a>


<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M62">View MathML</a>


Equation (31) yield the collective mode spectrum <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M63">View MathML</a>. Rotating the axes one obtains the excitation spectrum at general q

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M64','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M64">View MathML</a>


At Q = 0 the spectrum (33) is isotropic. It can be presented in the Bogolyubov form

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M65">View MathML</a>


In equation (34)

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M66">View MathML</a>


is the kinetic energy (εq ħ2q2/2M at qℓ ≪ 1, where M is the magnetoexciton mass, see, for instance [27]), and

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M67">View MathML</a>


has the sense of the exciton-exciton interaction energy (that includes the direct and exchange parts).

The condition for the dynamical stability of the state (13) is the real valueness of the excitation spectrum (34). This condition determines the diapason of d/ℓ and εi where superfluid magnetoexciton state can be realized. To be more concrete we consider three types of heterostructures. Type A is a graphene-dielectric-graphene sandwich with two graphene layers at the surface, Type B is a graphene-dielectric-graphene-dielectric structure with one such a layer, and Type C is a system of two graphene layers embedded in a dielectric matrix (Figure 2). For simplicity, we imply the same dielectric constants ε for the interfacial layer and the substrate.

thumbnailFigure 2. Graphene heterostructures under study.

The dynamical stability condition is fulfilled at <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M68">View MathML</a>, where <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M69">View MathML</a> depends on the imbalance parameter <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M70">View MathML</a>. The dependence <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M69">View MathML</a> at <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M71">View MathML</a> is shown in Figure 3.

thumbnailFigure 3. Phase diagram at <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M71">View MathML</a> for the graphene bilayers of A, B, and C type. Solid curves, <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M69">View MathML</a>; dashed curves, εc(d/ℓ).

The requirement for the Coulomb energy be smaller than the distance between Landau levels yields the restriction on ε. Since we study the pairing in N = 0 Landau level we compare the Coulomb energy with the energy distance between N = 0 and N = 1 levels <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M72">View MathML</a>.

We have four parameters that characterize the Coulomb energy W, J11, J22, and J12. At <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M73">View MathML</a> the largest of them is J11 (the intralayer exchange interaction in the graphene layer at the surface). Therefore, it is natural to consider the condition

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M74">View MathML</a>


as the additional restriction on the parameters. Equation (37) can be rewritten as ε > εc(d/ℓ). The quantity εc can be understood as a critical dielectric constant. The dependence εc(d/ℓ) is also shown in Figure 3.

Two conditions <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M75','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M75">View MathML</a> and ε > εc(d/ℓ) determine the range of parameters where one can expect a realization of electron-hole pairing and magnetoexciton superfluiduty in graphene bilayer systems.

4 Critical temperature

In a bilayer graphene heterostructure with a fixed d the magnetoexciton superfluidity can be realized in a wide range of magnetic field. Variation of B at fixed gate voltage results in a change of imbalance of the active component. Simultaneous tuning of Vg allows to keep zero imbalance <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M71">View MathML</a> and maximum order parameter under variation of B. In this section, we study the dependence of critical temperature on magnetic field implying such a simultaneous tuning.

Superfluid transition temperature is given by the Berezinskii-Kostelitz-Thouless equation [15]

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M76','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M76">View MathML</a>


where ρs(T) is the superfluid stiffness at finite temperature. The superfluid stiffness is defined as the coefficient in the expansion of the free energy in the phase gradient <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M95">View MathML</a>. In a weakly nonideal Bose gas it is equal to ρs = ħ2ns/m, where ns is the superfluid density. As was shown in previous section, superfluid stiffness determines also the supercurrent.

Taking into account linear excitations we present the free energy F = E0 - TS in the following form

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M77">View MathML</a>


Expansion of equation (39) yields the following expression for the superfluid stiffness

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M78">View MathML</a>


It follows from (40) and (33) that ρs(T) < ρs0 (thermal fluctuations reduce the superfluid stiffness).

For the spectrum (q) = E(q) + ħqv (where v = ħφ/m is the superfluid velocity) (40) yields the well-known answer for the superfluid density [28]. Equation (40) generalizes the results [28] for the general case.

The dependence of critical temperature on magnetic field at <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M71">View MathML</a> and ε = 4 is shown in Figure 4. One can see that the maximum critical temperature is reached approximately at B ≈ 0.5Bd, where Bd = ϕ/πd2 with ϕ = hc/2e, the magnetic flux quantum.

thumbnailFigure 4. Critical temperature vs magnetic field for A, B, and C structures. Temperature is given in units of Td = e2/εd, magnetic field, in units of Bd = ϕ/πd2.

5 Influence of impurities on the critical parameters

In the previous section, we have determined the influence of thermal fluctuations on the superfluid stiffness. In this section, we consider the effect of reduction of the superfluid stiffness caused by the interaction of magnetoexcitons with impurities.

The Hamiltonian of the interaction of the active component with impurities can be presented in the form

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M79">View MathML</a>


where Uz(q) = U1(q) - U2(q), Ui(q) is the Fourier-component of the impurity potential in the layer i, and

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M80">View MathML</a>


is the Fourier component of the electron density operator for the active component.

In the state (13), the energy of interaction with the impurities expressed in terms of mz(q) reads as

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M81">View MathML</a>



<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M82">View MathML</a>

The interaction (43) induces the fluctuations of the density and the phase of the order parameter.

Their values can be obtained from the Euler-Lagrange equations

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M83">View MathML</a>


where E is the energy of the system, described by the Hamiltonian H = HC + HG + Himp in the state (13).

Equations (44) solved in linear in impurity potential approximation yield

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M84','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M84">View MathML</a>


<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M85">View MathML</a>


Substituting (45), (46) into the expression for the energy one finds the correction to the energy caused by the electron-impurity interaction

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M86">View MathML</a>


In equation (47), the contribution of fluctuations with the wave vectors directed along x is taken into account. Summing the contribution for all wave vectors one obtains

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M87">View MathML</a>


For simplicity, we specify the case where impurities are located in graphene layers. Then the Fourier-component of the impurity potential can be presented in the form

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M88','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M88">View MathML</a>


where ra are the impurity coordinates, and uz,i(q) = u1,i(q) - u2,i(q) with uk,i(q), the potential in the layer k of a single impurity centered at r = 0 in the layer i.

Averaging over impurities yields

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M89">View MathML</a>


where nimp is the impurity concentration in a layer.

At Qℓ ≪ 1 the energy (50) can be expanded in series as

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M90">View MathML</a>



<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M91','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M91">View MathML</a>


is the correction of the superfluid stiffness. One can check that the correction Δρs is negative. Thus, the interaction with impurities results in decrease of critical parameters.

At <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M71">View MathML</a> equation (52) is reduced to

<a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M92">View MathML</a>


where ρs0 (equation (22)) is taken at θa = π/2.

The shift of critical temperature is evaluated as ΔTc/Tc Δρs/ρs0.a We define the critical impurity concentration <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M93','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M93">View MathML</a> as a concentration at which Δρs/ρs0 = 1. We consider charged impurities with the potential uz,i(q) = (-1)i(V12(q) - Vii(q)). The dependence of critical impurity concentration on magnetic field at ε = 4 and <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M71">View MathML</a> is shown in Figure 5. We also evaluated critical concentrations for neutral impurities. These concentrations are much larger, and the influence of neutral impurities can be neglected.

thumbnailFigure 5. Critical impurity concentration versus magnetic field for charged impurities located in graphene layers.

6 Conclusion

In conclusion, we present some estimates. Let us specify the type B structure (the one used in [1]) with d = 20 nm and ε = 4. For this structure the maximum critical temperature Tc ≈ 3 K (in pure case) is reached in magnetic field B ≈ 0.8 T. At such B the critical impurity concentration is <a onClick="popup('http://www.nanoscalereslett.com/content/7/1/145/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.nanoscalereslett.com/content/7/1/145/mathml/M94">View MathML</a>. The gate voltage determined by equation (11) is Vg ≈ 6 mV, that corresponds to electrostatic field E ≈ 3 kVcm-1.

Basing on the results of our study we may state the following.

1. Graphene bilayer structures are perspective objects for the observation of magnetoexciton superfluidity. The advantages are smaller magnetic fields and no restriction from above on physical interlayer distance, that means the possibility to suppress completely interlayer tunneling.

2. Gate voltage should be created between graphene layers for a realization of magnetoexciton superfluidity.

3. Certain conditions on dielectric constant and on the ratio between interlayer distance and magnetic length should be satisfied.

4. Structures with graphene layers situated at the surface have larger critical parameters.

5. Neutral impurities are not dangerous for the magnetoexciton superfluidity, but the concentration of charged impurities should be controlled.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AAP carried out the calculation and took part in the manuscript preparation. DVF designed and coordinated of the study and prepare the manuscript. All authors read and approved the final manuscript.


aSince in our approach we assume smallness of Δps/ps0 it is just an estimate.


This study was supported by the Ukraine State Program "Nanotechnologies and nanomaterials" Project No.


  1. Kim S, Jo I, Nah J, Yao Z, Banerjee SK, Tutuc E: Coulomb drag of massless fermions in graphene.

    Phys Rev B 2011, 83:161401.



  2. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J: Boron nitride substrates for high-quality graphene electronics.

    Nat Nanotechnol 2010, 5:722-726. PubMed Abstract | Publisher Full Text OpenURL

  3. Lozovik YE, Sokolik AA: Electron-hole pair condensation in a graphene bilayer.

    JETP Lett 2008, 87(1):55-59. Publisher Full Text OpenURL

  4. Min H, Bistritzer R, Su JJ, MacDonald AH: Room-temperature superfluidity in graphene bilayers.

    Phys Rev B 2008, 78:121401.



  5. Seradjeh B, Weber H, Franz M: Vortices, zero modes, and fractionalization in the bilayer-graphene exciton condensate.

    Phys Rev Lett 2008, 101(24):246404.


    PubMed Abstract | Publisher Full Text OpenURL

  6. Berman OL, Lozovik YE, Gumbs G: Bose-Einstein condensation and superfluidity of magnetoexcitons in bilayer graphene.

    Phys Rev B 2008, 77:155433.



  7. Lozovik YE, Merkulova SP, Sokolik AA: Collective electron phenomena in graphene.

    Phys Usp 2008, 51(7):727-744. OpenURL

  8. Fil DV, Kravchenko LY: Superconductivity of electron-hole pair in a bilayer graphene system in a quantizing magnetic field.

    Low Temp Phys 2009, 35:712-723. Publisher Full Text OpenURL

  9. Bezuglyi AI: Dynamical equation for an electron-hole pair condensate in a system of two graphene layers.

    Low Temp Phys 2010, 36:236-242. Publisher Full Text OpenURL

  10. Lozovik YE, Yudson VI: Novel mechanism of superconductivity- pairing of spatially separated electrons and holes.

    Sov Phys JETP 1976, 44:389-397. OpenURL

  11. Shevchenko SI: Theory of superconductivity of systems with pairing of spatially separated electrons and holes.

    Sov J Low Temp Phys 1976, 2:251-256. OpenURL

  12. Kellogg M, Eisenstein JP, Pfeiffer LN, West KW: Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system.

    Phys Rev Lett 2004, 93:036801.


    PubMed Abstract | Publisher Full Text OpenURL

  13. Wiersma RD, Lok JGS, Kraus S, Dietsche W, von Klitzing K, Schuh D, Bichler M, Tranitz HP, Wegscheider W: Activated transport in the separate layers that form the νT = 1 exciton condensate.

    Phys Rev Lett 2004, 93:266805.


    PubMed Abstract | Publisher Full Text OpenURL

  14. Tutuc E, Shayegan M, Huse DA: Counterflow measurements in strongly correlated gaas hole bilayers: evidence for electron-hole pairing.

    Phys Rev Lett 2004, 93:036802.


    PubMed Abstract | Publisher Full Text OpenURL

  15. Moon K, Mori H, Yang K, Girvin SM, MacDonald AH, Zheng L, Yoshioka D, Zhang SC: Spontaneous interlayer coherence in double-layer quantum Hall systems: Charged vortices and Kosterlitz-Thouless phase transitions.

    Phys Rev B 1995, 51:5138-5170. Publisher Full Text OpenURL

  16. Eisenstein JP, MacDonald AH: Bose-Einstein condensation of excitons in bilayer electron systems.

    Nature 2004, 432:691-694. PubMed Abstract | Publisher Full Text OpenURL

  17. Huse DA: Resistance due to vortex motion in the ν = 1 bilayer quantum Hall superfluid.

    Phys Rev B 2005, 72:064514.



  18. Roostaei B, Mullen KJ, Fertig HA, Simon SH: Theory of activated transport in bilayer quantum Hall systems.

    Phys Rev Lett 2008, 101:046804.


    PubMed Abstract | Publisher Full Text OpenURL

  19. Fil DV, Shevchenko SI: Transport properties of ν = 1 quantum Hall bilayers. Phenomenological description.

    Phys Lett A 2010, 374:3335-3340. Publisher Full Text OpenURL

  20. Yoon Y, Tiemann L, Schmult S, Dietsche W, von Klitzing K, Wegscheider W: Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum Hall bilayers.

    Phys Rev Lett 2010, 104:116802.


    PubMed Abstract | Publisher Full Text OpenURL

  21. Fil DV: Locking and unlocking of the counterflow transport in ν = 1 quantum Hall bilayers by tilting of magnetic field.

    Phys Rev B 2010, 82:193303.



  22. Fil DV, Shevchenko SI: Interlayer tunneling and the problem of superfluidity in bilayer quantum Hall systems.

    Low Temp Phys 2007, 33:780-782. Publisher Full Text OpenURL

  23. Su JJ, MacDonald AH: How to make a bilayer exciton condensate flow.

    Nat Phys 2008, 4:799-802. Publisher Full Text OpenURL

  24. Fil DV, Shevchenko SI: Josephson vortex motion as a source for dissipation of superflow of e-h pairs in bilayers.

    J Phys: Condens Matter 2009, 21:215701.


    Publisher Full Text OpenURL

  25. Castro Neto AH, Guinea F, Peres NM, Novoselov KS, Geim AK: The electronic properties of graphene.

    Rev Mod Phys 2009, 81:109-162. Publisher Full Text OpenURL

  26. Novoselov KS, McCann E, Morozov SV, Fal'ko VI, Katsnelson MI, Zeitler U, Jiang D, Schedin F, Geim AK: Unconventional quantum Hall effect and Berrys phase of 2π in bilayer graphene.

    Nat Phys 2006, 2:177-180. Publisher Full Text OpenURL

  27. Kravchenko LY, Fil DV: Critical currents and giant non-dissipative drag for superfluid electronhole pairs in quantum Hall multilayers.

    J Phys Condens Matter 2008, 20:325235.


    Publisher Full Text OpenURL

  28. Lifshitz EM, Pitaevskii LP: Statistical Physics. Oxford, Pergamon Press; 1980.

    Part 2