Open Access Nano Idea

3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

Nammoon Kim and Youngok Kim*

Author affiliations

Kwangwoon University, 26 Kwangwoon-gil, Nowon-Gu, Seoul, 139-701, South Korea

For all author emails, please log on.

Citation and License

Nanoscale Research Letters 2011, 6:544  doi:10.1186/1556-276X-6-544

Published: 4 October 2011

Abstract

In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

Keywords:
3D positioning; nano-scale pulse; UWB; orthogonality; impulse radio