Table 3

Experiments focusing on Conduction heat transfer

Paper Reference No

keff/Knf Conduction

keff/kNF Convection/Mixed

NP Material L

NP size, (nm unless specified)

BF Material L

Φ,(vol% Unless specified)

T test, (K)

Experiment al Apparatus Index No

Mechanism Index No

μNF/μBF

Flow Status

Effects of Gravity

PBHT

CHT

Notes


[113]

1.35

-

ZnO

77

3:2 mass EG: Water

4.0000

368

3

-

-

-

-

-

-



[113]

1.42

-

ZnO

29

4.0000

368

3

-

-

-

-

-

-



[113]

1.49

-

ZnO

29

7.0000

363

3

-

-

-

-

-

-



[113]

1.60

-

CuO

29

6.0000

363

3

-

-

-

-

-

-



[113]

1.69

-

Al2O3

53

10.0000

365

3

-

-

-

-

-

-


[24]

1.07

-

Al2O3

150

water

1.0000

344

2

1

-

-

-

-

-


[24]

1.10

-

Al2O3

11

water

1.0000

344

2

1

-

-

-

-

-


[24]

1.15

--

Al2O3

47

water

1.0000

344

2

1

-

-

--

-

-


[24]

1.29

-

Al2O3

47

Water

4.0000

344

2

1

-

-

-

-

-


[73]

1.11

-

Al2O3

36

water

10.0000

294

2

-

-

-

-

-

-

not large differences generally found in this experiment with varying T, Φ and material


[73]

1.12

-

Al2O3

47

water

10.0000

294

2

-

-

-

-

-

-


[73]

1.11

-

CuO

29

water

10.0000

294

2

-

-

-

-

-

-

average temperature used (very narrow T range) hence very narrow change in results found (average will be used again) Note LARGE viscosity increase with ΔT around 10K


[33]

1.05

-

TiO2

21

water

2.0000

294

2

-

+5-15%

-

-

-

-


[118]

1.24

-

Cu2O

water

-

294

2

-

-

-

-

-

-


[59]

-

-

-

-

-

-

-

-

1

-

-

-

-

-

theoretical investigation


[62]

1.11

-

Al2O3

150

water

1.0000

334

2

3

-

-

-

-

-

averaged values used


[62]

1.12

-

Al2O3

80

EG

1.0000

334

2

3

-

-

-

-

-


[62]

1.12

-

Al2O3

80

water

1.0000

334

2

3

1.82

-

-

-

-


[62]

1.18

-

TiO2

15

EG

5.0000

334

2

3

-

-

-

-

-


[62]

1.37

-

Al

80

Engine Oil

3.0000

334

2

3

-

-

-

-

-


[62]

1.45

-

Al

80

EG

5.0000

334

2

3

-

-

-

-

-


[62]

2.60

-

CNT

0

Engine Oil

1.0000

334

2

3

-

-

-

-

-


[62]

-

-

TiO2

15

Water

334

2

3

1.85

-

-

-

-


[31]

>1

-

-

-

-

-

-

-

-

-

-

-

-

-

theoretical investigation


[48]

1.08

-

Au

17

Water

0.0003

335

4

1,4

-

-

-

-

-

-


[48]

1.10

-

Al2O3

150

water

4.0000

344

4

1,4

-

-

-

-

-

-


[48]

1.12

-

Al2O3

47

water

1.0000

344

4

1,4

-

-

-

-

-

-


[42]

1.14

-

Cu

10

EG

0.5500

-

-

3

-

-

-

-

-

-


[42]

1.18

-

Fe

10

EG

0.5500

-

-

3

-

-

-

-

-

-


[34]

1.15

-

Al2O3

35

EG

5.000

-

-

-

-

-

-

-

-


[34]

1.20

-

CuO

35

EG

4.0000

-

-

-

-

-

-

-

-


[34]

1.40

-

Cu

10

EG

0.3000

-

-

-

-

-

-

-

-


[21]

>1

-

CuO

80*20

Water

0.4000

-

1

-

>1 small

1,2

-

-

-

Turbulent and laminar flow must be present (see pressure diagrams - kick after a point indication of flow turning into turbulent with increased pressure losses). Furthermore, increase in performance observed under specific conditions (e.g. Low flow rates and high temperatures)


[63]

1.05

-

Al2O3

150

water

5.0000

-

-

3

-

-

-

-

-

-


[63]

1.24

-

Al2O3

80

water

5.0000

-

-

3

-

-

-

-

-

theoretical investigation


[76]

1.12

-

Al2O3

38

water

5.0000

-

-

3

-

-

-

-

-

layering theory investigated and found inadequate to account for the results obtained


[64]

>1

-

CuO

28.6

water

4.0000

-

-

1

>1

-

-

-

-

theoretical investigation


[71]

1.07

-

SiO2

9

water

14.6000

294

2

-

-

-

-

-

-

Very high concentrations used up to 30%. Used the lowest ones investigated to have a more concise records for comparison with the other papers reviewed. Moreover paper supports that there is no solid indication of anomalous increase in the thermal conductivities of NF


[15]

1.15

-

Al2O3

38.4

water

1.0000

320

-

1,3,5

-

-

-

-

-

-


[15]

1.22

-

Al2O3

38.4

water

4.0000

320

-

1,3,5

-

-

-

-

-

theoretical investigation


[15]

1.35

-

Cu

10

EG

2.0000

303

-

1,3,5

-

-

-

-

-


[15]

1.20

-

CuO

15

EG

5.0000

-

-

3

-

-

-

-

-


[15]

1.80

-

Cu

3

EG

5.0000

-

-

3

-

-

-

-

-


[9]

2.50

-

CNT

2*54

OIL

1.0000

-

-

3

-

-

-

-

-


[39]

1.23

-

Al2O3

35

water

5.0000

-

-

3

-

-

-

-

-

-


[39]

1.25

-

CuO

35

water

4.2000

-

-

3

-

-

-

-

-

-


[39]

1.30

-

Al2O3

35

EG

6.0000

-

-

3

-

-

-

-

-

average value used


[50]

1.30

-

Al

90

water

5.0000

324

3

1,6

-

-

-

-

-

-


[90]

1.03

-

Au Citrate

15.0000

Toluene

0.001

304

-

-

-

-

-

-

-

Surface Coating


[90]

1.05

-

Au Thiolate

3.5000

Toluene

0.0050

334

-

-

-

-

-

-

-


[90]

1.05

-

Au Citrate

15.0000

toluene

0.0003

304

-

-

-

-

-

-

-


[90]

1.07

-

Au Thiolate

3.5000

Toluene

0.0110

304

-

-

-

-

-

-

-


[90]

1.08

-

Au Citrate

15.0000

toluene

0.0003

304

-

-

-

-

-

-

-


[90]

1.09

-

Au Thiolate

Toluene

0.0110

334

-

-

-

-

-

-

-


[123]

>1

-

-

-

-

-

-

-

1,3

-

-

-

-

-

theoretical investigation - small size, large Φ, large enhancement


[94]

>1

-

-

-

-

-

-

-

1

-

-

-

-

-


[92]

>1

-

-

-

-

-

-

-

1

-

-

-

-

-

theoretical investigation - Brownian dynamic simulation - small size, large Φ large enhancement


[109]

1.05

-

Al2O3

50

water

2.0

298

-

-

-

-

-

-

-

suspected aggregation at lower NP sizes in this experimental work performed, that's why the conductivity increase for increasing NP size. Authors explain this by implying that the decrease in the NP size leads to increased phonon scattering - decreased NP conductivity


[109]

1.06

-

Al2O3

50

water

3.0

298

-

-

-

-

-

-

-


[109]

1.06

-

Al2O3

250

water

2.0

298

-

-

-

-

-

-

-


[109]

1.08

-

Al2O3

50

water

4.0

298

-

-

-

-

-

-

-


[109]

1.09

-

Al2O3

50

EG

2.0

298

-

-

-

-

-

-

-


[109]

1.09

-

Al2O3

250

EG

2.0

298

-

-

-

-

-

-

-


[109]

1.09

-

Al2O3

250

EG

3.0

298

-

-

-

-

-

-

-


[109]

1.11

-

Al2O3

50

water

3.0

298

-

-

-

-

-

-

-


[109]

1.14

-

Al2O3

250

EG

3.0

298

-

-

-

-

-

-

-


[109]

1.15

-

Al2O3

250

Water

3.0

298

-

-

-

-

-

-

-


[61]

1.02

-

Al2O3

45

EG

1.0

295

-

-

-

-

-

-

-

3ω method used


[61]

1.03

-

Al2O3

45

EG

2.0

295

-

-

-

-

-

-

-


[61]

1.04

-

Al2O3

45

water

1.0

295

-

-

-

-

-

-

-


[61]

1.08

-

Al2O3

45

EG

3.0

295

-

-

-

-

-

-

-


[61]

1.08

-

Al2O3

45

water

2.0

295

-

-

-

-

-

-

-


[61]

1.10

-

Al2O3

45

EG

4.0

295

-

-

-

-

-

-

-


[61]

1.11

-

Al2O3

45

water

3.0

295

-

-

-

-

-

-

-


[61]

1.13

-

Al2O3

45

water

4.0

295

-

-

-

-

-

-

-


[91]

>1

-

-

-

-

-

-

-

1

-

-

-

-

-

theoretical investigation


[38]

1.1

-

Ag

60

water

0.3

424

2

1,13

1.1

1

-

-

-

-


[38]

1.15

-

Ag

60

water

0.6

424

2

1,13

1.4

1

-

-

-

-


[38]

1.25

-

Ag

60

water

0.9

424

2

1,13

1.6

1

-

-

-

-


[38]

1.40

-

Ag

60

water

0.3

464

2

1,13

1.5

1

-

-

-

-


[38]

1.80

-

Ag

60

water

0.6

464

2

1,13

1.9

1

-

-

-

-


[38]

2.30

-

Ag

60

water

0.9

464

2

1,13

2.2

1

-

-

-

-


Sergis and Hardalupas Nanoscale Research Letters 2011 6:391   doi:10.1186/1556-276X-6-391

Open Data