Abstract
A graphene nanoribbon in the zigzag edge geometry exhibits a specific type of gapless edge modes with a partly flat band dispersion. We argue that the appearance of such edge modes are naturally understood by regarding graphene as the gapless limit of a Z_{2 }topological insulator. To illustrate this idea, we consider both KaneMele (graphenebased) and BernevigHughesZhang models: the latter is proposed for HgTe/CdTe 2D quantum well. Much focus is on the role of valley degrees of freedom, especially, on how they are projected onto and determine the 1D edge spectrum in different edge geometries.
Introduction
Graphene has a unique band structure with two Dirac points, K and K'valleysin the first Brillouin zone [1,2]. Its transport characteristics are determined by the interplay of such effective "relativistic" band dispersion and the existence of valleys [3,4]. The former induces a "Berry phase π," manifesting as the absence of backward scattering [5]. A direct consequence of this is the perfect transmission in a graphene pnjunction, or Klein tunneling [6,7], whereas its strong tendency not to localize, i.e., the antilocalization [810], is also a clear manifestation of the Berry phase π in the interference of electronic wave functions. Another feature characterizing the electronic property of graphene lies in the appearance of partly flat band edge modes in a ribbon geometry [1113]. It has been proposed that such flat band edge modes can induce nanomagnetism. The flat band edge modes also show robustness against disorder [14]. The Dirac nature in the electronic properties of graphene is much related to the concept of Z_{2 }topological insulator (Z_{2}TI). A Z_{2}TI is known to possess a pair of gapless helical edge modes protected by time reversal symmetry. Similar to the gapless chiral edge mode of quantum Hall systems, responsible for the quantization of (charge) Hall conductance [15], the helical edge modes ensure the quantization of spin Hall conductance. The KaneMele model [16,17] (= graphene + topological mass term, induced by an intrinsic spinorbit coupling) is a prototype of such Z_{2}TI constructed on a honeycomb lattice. Edge modes of graphene and of the KaneMele model show contrasting behaviors in the zigzag and armchair ribbon geometries [4,11]. In this article, we argue that the flat band edge modes of zigzag graphene nanoribbon can be naturally understood from the viewpoint of underlying Z_{2 }topological order in the KaneMele model. To illustrate this idea and clarify the role of valleys, we deal with the KaneMele and the BernevigHughesZhang (BHZ) models [18] in parallel, the latter being proposed for HgTe/CdTe 2D quantum well [19].
Flat band edge modes in garphene and KaneMele model for Z_{2 }topological insulator
Let us consider a minimal tightbinding model for graphene: , where t_{1 }is the strength of hopping between nearestneighbor (NN) sites, i and j, on the hexagonal lattice. The tightbinding Hamiltonian H_{1 }has two gap closing points, and , in the first Brillouin zone. In the KaneMele model [16], hopping between next NN (NNN) sites (hopping in the same sublattice) is added to H_{1}, the former being also purely imaginary: , where 〈〈...〉〉 represents a summation over NNN sites. s_{z }is the zcomponent of Pauli matrices associated with the real spin, and ν_{ij }is a sign factor introduced in [16]. The origin of this NNN imaginary hopping is intrinsic spinorbit coupling consistent with symmetry requirements. it_{2 }induces a mass gap of size in the vicinity of and .
Tightbinding implementation allows for giving a precise meaning to two representative edge geometries on hexagonal lattice: armchair and zigzag edges (a general edge geometry is a mixture of the two). Different geometries correspond to different ways of projecting the bulk band structure to 1D edge axis. In the armchair edge, the two Dirac points and reduce to an equivalent point whereas in the zigzag edge, they are projected onto inequivalent points on the edge, i.e., . Figures 1 and 2 show the energy spectrum of graphene (Figure 1) and of the KaneMele model (Figure 2) in the zigzag ribbon geometry. t_{2}/t_{1 }ratios are chosen as t_{2}/t_{1 }= 0 and t_{2}/t_{1 }= 0.05 in the above two cases, respectively (t_{1 }is fixed at unity). Dotted lines represent projection of and . In the KaneMele model (with a finite t_{2}) the existence of a pair of gapless helical edge modes is ensured by bulkedge correspondence [20].
Therefore, they appear both in armchair and zigzag edges. In the graphene limit: t_{2 }→ 0, however, the edge modes survive only in the zigzag edge geometry, as a result of different ways in which  and points are projected onto the edge. In the armchair edge, the helical modes at finite t_{2 }are absorbed in the bulk Dirac spectrum in this limit. In the zigzag edge, on the contrary, the helical modes connecting and survive but become completely flat in the limit t_{2 }→ 0. Notice that and interchange under a timereversal operation. In the sense stated above, we propose that the flat band edge modes of a zigzag graphene ribbon is a precursor of helical edge modes characterizing the Z_{2 }topological insulator.
Note here that such surface phenomena as fiat and helical edge states are characteristics of a system of a finite size, and the evolution of such gapless surface states is continuous, free from discontinuities characterizing a conventional phase transition as described by the Landau theory of symmetry breaking. The study of a system of a finite size L can be employed to determine the presence (or absence) of a topological gap with the precision of 1/L. The behavior of such gapless surface states that exist on the topologically nontrivial side is continuous, up to and at the gap closing. They also evolve continuously into gapped surface states on the trivial side. The flat edge modes appear at the gap closing when they do.
Edge modes of BHZ model on square lattice
Inspired by the contrasting behaviors of edge modes of graphene and of the KaneMele model in the zigzag and armchair ribbon geometries, let us consider here the BHZ model in different edge geometries [21]. The BHZ model in the continuum limit is a lowenergy effective Hamiltonian describing the vicinity of a gap closing at Γ = (0, 0) of the 2D HgTe/CdTe quantum well. It can be also regularized on a 2D square lattice in the following tightbinding form:
where Γ_{x }and Γ_{y }are 2 × 2 hopping matrices:
σ = (σ_{x}, σ_{y}, σ_{z}) is another set of Pauli matrices different from s = (s_{x}, s_{y}, s_{z}), and represents an orbital pseudo spin. Note also that Equation 1 describes only the (real) spin up part. To find the total timereversal symmetric Hamiltonian, Equation 1 must be compensated by its Kramers partner [18]. The lattice version of BHZ model acquires four gapclosing points shown in Table 1, if one allows the original mass parameter Δ to vary beyond the vicinity of Δ = 0. The new gap closing occurs at different points in the Brillouin zone from the original Dirac cone (Γpoint), namely, at X_{1 }= (π/a,0), X_{2 }= (0, π/a) and M = (π/a, π/a). The gap closing at M occurs at Δ = 8B, whereas the gap closings at X_{1 }and X_{2 }occur simultaneously when Δ = 4B. Thus, at Δ = 4B, "valley" degrees of freedom appear as a consequence of the square lattice regularization. In contrast to K and K'valleys in graphene; however, the valleys here, X_{1 }and X_{2}, are two of the four timereversal invariant momenta in the 2D Brillouin zone. Away from the gap closing, the spectrum acquires a mass gap. The sign of such a mass gap, together with the chirality χ, determines their contribution to the spin Hall conductance: . Here, ↑ and ↓ refer to the real spin. In the table, only the sign in front of e^{2}/h is shown. The symmetry of the valence orbital is indicated in the parentheses, which is either, s (normal gap) or p (inverted gap), corresponding, respectively, to the parity eigenvalue: δ_{s }= +1 or δ_{p }= 1. The latter is related to the Z_{2 }index ν as (1)^{ν }= ∏_{DP }δ_{DP }[22]. The Z_{2 }nontrivial phase is characterized by ν = 1, and corresponds to the range of parameters: 0 < Δ/B < 4 and 4 < Δ/B < 8. Note that in the ν = 1 phase, contributions from Γ and M to cancel, whereas those from X_{1 }and X_{2 }reinforce each other. In this sense, the role of X_{1 }and X_{2 }are analpogous to that of K and K' in the Z_{2 }nontrivial phase of the KaneMele model.
Table 1. Four Dirac cones of BHZ model on square lattice
Figures 3 and 4 shows two representative edge geometries on a 2D square lattice: straight (Figure 3) vs. zigzag (Figure 4) edge geometries. In analogy to the projection of K and K'points onto the edge in armchair and zigzag edge geometries, notice that here in the straight edge, Γ and X_{2 }are superposed on the k_{x}axis. Similarly, X_{1 }and M are projected onto the same point. In the zigzag edge of BHZ model, Γ and M are superposed, whereas X_{1 }and X_{2 }reduce to an equivalent point at the zone boundary.
Straight edge
The edge spectrum in the straight edge geometry is obtained analytically as [21,23], E(k_{x}) = ± A sin k_{x}. As is clear from the expression, the spectrum does not depend on Δ/B, which is very peculiar to the straight edge case. Only the range of the existence of edge modes changes as a function of Δ/B (see Figures 5, 6, 7, 8, 9 and 10) [21]. In the figure, the energy spectrum (of edge + bulk modes) obtained numerically for a system of 100 rows is shown in a ribbon geometry with two straight edges. Starting with Figure 5 (spectrum shown in red), the value of Δ/B is varied as Δ/B = 0.2, Δ/B = 0.8 (green, Figure 6), Δ/B = 2 (blue, Figure 7), Δ/B = 3.2 (cyan, Figure 8), and Δ/B = 4 (magenta, Figure 9). All of these five plots are superposed in the last panel (Figure 10). A and B are fixed at unity. The dotted curve is a reference showing the exact edge spectrum. The plots show explicitly that the edge spectrum at different values of Δ/B are indeed on the same sinusoidal curve.
Figure 5. Energy spectrum of BHZ model: straight edge, Δ/B = 0.2.
Figure 6. Δ/B = 0.8.
Figure 7. Δ/B = 2.
Figure 8. Δ/B = 3.2.
Figure 9. Δ/B = 4.
Figure 10. Comparison of Figures 510.
Zigzag edge
In contrast to the straight edge case, deriving an analytic expression for the edge spectrum in the zigzag edge geometry is a much harder task [24].
The edge spectrum has also a very different character from the straight edge case; typically, its slope in the vicinity of crossing points varies as a function of Δ/B (see Figures 11, 12, 13, 14, 15 and 16): Δ/B = 0.2 (red, Figure 11), Δ/B = 0.8 (green, Figure 12), Δ/B = 2 (blue, Figure 13). Δ/B = 3.2 (cyan, Figure 14), and Δ/B = 4 (magenta, Figure 15). These five plots are superposed in the last panel (Figure 16) to show that the edge spectra at different values of Δ/B are, in contrast to the straight edge case, not on the same curve. Even in the longwavelength limit: k → 0, their slopes still differ.
Figure 11. Energy spectrum of BHZ model: zigzag edge, Δ/B = 0.2.
Figure 12. Δ/B = 0.8.
Figure 13. Δ/B = 2.
Figure 14. Δ/B = 3.2.
Figure 15. Δ/B = 4.
Figure 16. Comparison of Figures 1115.
At Δ/B = 4, the edge spectrum becomes completely flat and covers the entire Brillouin zone. Notice that the horizontal axis is suppressed to make the edge modes legible. Analogous to the flat edge modes in graphene, these edge modes connect the two valleys X_{1 }and X_{2 }in the bulk, though they reduce to an equivalent point on the edge. As the bulk spectrum is also gapless at Δ/B = 4, the flat edge modes indeed touch the bulk continuum at the zone boundary.
Conclusions
We have studied the edge modes of graphene and of related topological insulator models in 2D. Much focus has been on the comparison between the single versus double valley systems (KaneMele versus BHZ). We have seen that a flat edge spectrum appears in the two cases, whereas in the latter case, the flat band edge modes connect the two valleys that have emerged because of the (square) lattice regularization. The appearance of flat band edge modes in the zigzag graphene nanoribbon was naturally understood from such a point of view.
Abbreviations
BHZ: BernevigHughesZhang.
Competing interests
The authors declare that they have no competing interests.
Authors' Contributions
KI carried out much of the analytical and numerical studies, and wrote the manuscript. SM made a significant contribution to the analytic part. AY contributed mainly to the numerical part. YK supervised the project.
References

Wallace PR: The Band Theory of Graphite.
Phys Rev 1947, 71(9):622634. Publisher Full Text

Semenoff GW: CondensedMatter Simulation of a ThreeDimensional Anomaly.
Phys Rev Lett 1984, 53(26):24492452. Publisher Full Text

Geim AK, Novoselov KS: The rise of graphene.
Nature Mater 2007, 6:183. Publisher Full Text

Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK: The electronic properties of graphene.
Rev Mod Phys 2009, 81:109162. Publisher Full Text

Ando T, Nakanishi T, Saito R: Berry's Phase and Absence of Back Scattering in Carbon Nanotubes.
Journal of the Physical Society of Japan 1998, 67(8):28572862. Publisher Full Text

Katsnelson MI, Novoselov KS, Geim AK: Chiral tunnelling and the Klein paradox in graphene.
Nature Phys 2006, 2:620. Publisher Full Text

Yamakage A, Imura KI, Cayssol J, Kuramoto Y: Spinorbit effects in a graphene bipolar pn junction.
EPL (Europhysics Letters) 2009, 87(4):47005. Publisher Full Text

Suzuura H, Ando T: Crossover from Symplectic to Orthogonal Class in a TwoDimensional Honeycomb Lattice.
Phys Rev Lett 2002, 89(26):266603. PubMed Abstract  Publisher Full Text

Nomura K, Koshino M, Ryu S: Topological Delocalization of TwoDimensional Massless Dirac Fermions.
Phys Rev Lett 2007, 99(14):146806. PubMed Abstract  Publisher Full Text

Imura KI, Kuramoto Y, Nomura K: Weak localization properties of the doped Z_{2 }topological insulator.

Fujita M, Wakabayashi K, Nakada K, Kusakabe K: Peculiar Localized State at Zigzag Graphite Edge.
Journal of the Physical Society of Japan 1996, 65(7):19201923. Publisher Full Text

Ryu S, Hatsugai Y: Topological Origin of ZeroEnergy Edge States in ParticleHole Symmetric Systems.
Phys Rev Lett 2002, 89(7):077002. PubMed Abstract  Publisher Full Text

Yao W, Yang SA, Niu Q: Edge States in Graphene: From Gapped FlatBand to Gapless Chiral Modes.
Phys Rev Lett 2009, 102(9):096801. PubMed Abstract  Publisher Full Text

Wakabayashi K, Takane Y, Sigrist M: Perfectly Conducting Channel and Universality Crossover in Disordered Graphene Nanoribbons.
Phys Rev Lett 2007, 99(3):036601. PubMed Abstract  Publisher Full Text

Datta S: Electronic transport in mesoscopic systems. Cambridge Univ. Press; 1995.

Kane CL, Mele EJ: Quantum Spin Hall Effect in Graphene.
Phys Rev Lett 2005, 95(22):226801. PubMed Abstract  Publisher Full Text

Kane CL, Mele EJ: Z_{2 }Topological Order and the Quantum Spin Hall Effect.
Phys Rev Lett 2005, 95(14):146802. PubMed Abstract  Publisher Full Text

Bernevig BA, Hughes TL, Zhang SC: Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells.
Science 2006, 314:1757. PubMed Abstract  Publisher Full Text

König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L, Qi XL, Zhang SC: Quantum Spin Hall Insulator State in HgTe Quantum Wells.
Science 2007, 318:766. PubMed Abstract  Publisher Full Text

Wen XG: Theory of the edge excitations in FQH effects.
Int J Mod Phys B 1992, 6:1711. Publisher Full Text

Imura KI, Yamakage A, Mao S, Hotta A, Kuramoto Y: Zigzag edge modes in a Z_{2 }topological insulator: Reentrance and completely at spectrum.

Fu L, Kane CL: Topological insulators with inversion symmetry.

König M, Buhmann H, Molenkamp LW, Hughes T, Liu CX, Qi XL, Zhang SC: The Quantum Spin Hall Effect: Theory and Experiment.
Journal of the Physical Society of Japan 2008, 77(3):031007. Publisher Full Text

Mao S, Kuramoto Y, Imura KI, Yamakage A: Analytic Theory of Edge Modes in Topological Insulators.
Journal of the Physical Society of Japan 2010, 79(12):124709. Publisher Full Text