Open Access Open Badges Nano Express

Experimental stability analysis of different water-based nanofluids

Laura Fedele1, Laura Colla1, Sergio Bobbo1*, Simona Barison2 and Filippo Agresti2

Author Affiliations

1 Consiglio Nazionale delle Ricerche, Istituto per le Tecnologie della Costruzione, Corso Stati Uniti, I-35127 Padova, Italy

2 Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Corso Stati Uniti, I-35127 Padova, Italy

For all author emails, please log on.

Nanoscale Research Letters 2011, 6:300  doi:10.1186/1556-276X-6-300

Published: 6 April 2011


In the recent years, great interest has been devoted to the unique properties of nanofluids. The dispersion process and the nanoparticle suspension stability have been found to be critical points in the development of these new fluids. For this reason, an experimental study on the stability of water-based dispersions containing different nanoparticles, i.e. single wall carbon nanohorns (SWCNHs), titanium dioxide (TiO2) and copper oxide (CuO), has been developed in this study. The aim of this study is to provide stable nanofluids for selecting suitable fluids with enhanced thermal characteristics. Different dispersion techniques were considered in this study, including sonication, ball milling and high-pressure homogenization. Both the dispersion process and the use of some dispersants were investigated as a function of the nanoparticle concentration. The high-pressure homogenization was found to be the best method, and the addition of n-dodecyl sulphate and polyethylene glycol as dispersants, respectively in SWCNHs-water and TiO2-water nanofluids, improved the nanofluid stability.