SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Highly Accessed Open Badges Nano Express

Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation

P Sudhagar1, K Asokan2, June Hyuk Jung1, Yong-Gun Lee3, Suil Park1 and Yong Soo Kang1*

Author affiliations

1 Center for Next Generation Dye-Sensitized Solar Cells, WCU Program, Department of Energy Engineering, Hanyang University, Seoul, 133-791, South Korea

2 Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110 067, India

3 School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea

For all author emails, please log on.

Citation and License

Nanoscale Res Lett 2011, 6:30  doi:10.1007/s11671-010-9763-2

Published: 16 September 2010


A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

Titanium oxide; Interfaces; Impedance spectroscopy; Dye-sensitized solar cells; Ion beam irradiation