Open Access Nano Review

Thermal conductivity and thermal boundary resistance of nanostructures

Konstantinos Termentzidis123*, Jayalakshmi Parasuraman4, Carolina Abs Da Cruz123, Samy Merabia5, Dan Angelescu4, Frédéric Marty4, Tarik Bourouina4, Xavier Kleber6, Patrice Chantrenne123 and Philippe Basset4

Author Affiliations

1 INSA Lyon, CETHIL UMR5008, F-69621 Villeurbanne, France

2 Université de Lyon, CNRS, F-69621 Villeurbanne, France

3 Université Lyon 1, F-69621 Villeurbanne, France

4 Université Paris-Est, ESYCOM, ESIEE Paris, BP 99, 2 bd Blaise Pascal, F-93162 Noisy Le Grand, France

5 Université de Lyon 1 - LPMCN UMR5586, CNRS, F-69621 Villeurbanne, France

6 Université de Lyon - MATEIS UMR5510, CNRS, INSA Lyon, Université Lyon 1, F-69621 Villeurbanne, France

For all author emails, please log on.

Nanoscale Research Letters 2011, 6:288  doi:10.1186/1556-276X-6-288

Published: 4 April 2011


We present a fabrication process of low-cost superlattices and simulations related with the heat dissipation on them. The influence of the interfacial roughness on the thermal conductivity of semiconductor/semiconductor superlattices was studied by equilibrium and non-equilibrium molecular dynamics and on the Kapitza resistance of superlattice's interfaces by equilibrium molecular dynamics. The non-equilibrium method was the tool used for the prediction of the Kapitza resistance for a binary semiconductor/metal system. Physical explanations are provided for rationalizing the simulation results.


68.65.Cd, 66.70.Df, 81.16.-c, 65.80.-g, 31.12.xv