Open Access Highly Accessed Open Badges Nano Review

Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

María José Pastoriza-Gallego, Luis Lugo, José Luis Legido and Manuel M Piñeiro*

Author affiliations

Departamento de Física Aplicada, Facultade de Ciencias, Universidade de Vigo, Campus Universitario s/n, E-36310, Vigo, Spain

For all author emails, please log on.

Citation and License

Nanoscale Research Letters 2011, 6:221  doi:10.1186/1556-276X-6-221

Published: 15 March 2011


The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.