Open Access Nano Express

Pores in n-Type InP: A Model System for Electrochemical Pore Etching

Malte Leisner*, Jürgen Carstensen and Helmut Föll

Author Affiliations

Institute for Materials Science, Christian-Albrechts-University of Kiel, Kaiserstrasse 2, 24143, Kiel, Germany

For all author emails, please log on.

Nanoscale Research Letters 2010, 5:1190-1194  doi:10.1007/s11671-010-9624-z


The electronic version of this article is the complete one and can be found online at:


Received:15 April 2010
Accepted:28 April 2010
Published:14 May 2010

© 2010 The Author(s)

Abstract

The growth mechanism of currentline-oriented pores in n-type InP has been studied by Fast-Fourier-Transform Impedance Spectroscopy (FFT IS) applied in situ during pore etching and by theoretical calculations. Several pore growth parameters could thus be extracted in situ that are otherwise not obtainable. These include the space-charge-region (SCR) width, the SCR potential, the capacitance at the pore tips, and the avalanche breakdown field strength. It could be demonstrated that the system adjusts itself in such a way that the potential across the space-charge-region at the pore tips is kept constant within a certain bandwidth of the applied potential. This provides for a constant field strength at the pore tips, ensuring that avalanche breakdown occurs, generating the necessary holes for the electrochemical dissolution of InP.

Keywords:
Porous semiconductors; InP; Impedance spectroscopy

Introduction

Porous semiconductors have been envisioned for the use in a broad range of applications, and substantial R&D efforts have been made in this direction [1-7]. In the majority of the proposed applications, the detailed morphology of the porous structure is decisive for the functioning of the application. Morphology parameters like pore diameter and shape, pore wall thickness and roughness, or pore density have to be established with often a rather high precision, i.e. for optical applications [4,8]. To meet precise specifications, a thorough understanding of the pore formation mechanism is needed but not yet established for any pore system, including the thoroughly investigated porous Si. For deeper insights into general pore etching mechanisms, InP can be considered as a model semiconductor, which allows easier systematic investigations than, e.g., Si because only two kinds of pores seem to exist, which are quite different in their general behavior. Changing external parameters like the etching current density or the potential can easily control the respective pore formation modes. Both pore growth modes seem to embody the simplest case of electrochemical pore etching, where only one main electrochemical reaction occurs, in contrast to systems like Si, where always several reactions occur, making the system harder to analyze.

The two pore types present in InP are the so-called crystallographical pores (crystos) and currentline pores (curros). The crysto pores always grow into the <111>B directions of the InP crystal [9,10], Fig. 1a gives an example. The pores have a triangular cross section and pore tips and grow along the two available “downward” <111> B directions of the crystal (“channels” or lines in the plane of view in Fig. 1a) and into the two available “upward” <111> B directions, intersecting the plane of view in Fig. 1a, giving the appearance of triangular holes.

thumbnailFigure 1. Cross-sectional view of a crystallographical pores in (100) n-type InP, b currentline pores in (100) n-type InP

Figure 1b shows a typical example of curro pores in (100) n-type InP [11,12]. The pores have a circular cross-section and semispherical pore tips. They grow in direction of the current flow, i.e. usually perpendicular to the sample surface, independent of the crystal orientation.

The growth mechanism of crysto pores has already been studied by FFT Impedance Spectroscopy and could be successfully modeled by a stochastic model of the “current burst” type [13], which has been implemented into a Monte-Carlo simulation [14,15]. This work will focus on the growth mechanism behind the currentline pores, expanding the work presented in [16]. Results of the in situ FFT impedance spectroscopy [17] will be analyzed.

Experimental Procedure

All pores have been etched into single-crystalline n-type InP wafers. The orientation was (100), and three different doping concentrations ND have been used: 1·1017, 8·1017, and 3·1018 cm−3. The sample size was A = 0.25 cm2. The samples have been etched in an electrochemical double cell, the basic set-up is described in detail in [18]. 6 wt% HCl aq. has been used as electrolyte. All experiments have been conducted at T = 20°C under constant etching potential. The dc potential used was in the range of 6–8 V for ND = 1·1017 cm−3, 4–7 V for ND = 8·1017 cm−3, and 2–4 V for ND = 3·1018 cm−3. In these potential ranges “good quality” pores can be obtained, i.e. pores with straight and smooth pore walls, growing perpendicular to the surface. In the beginning of the experiments, a high-potential pulse has been applied for 1 s to guarantee a homogeneous nucleation of the pores. Typical etching times were between 5 and 70 min, resulting in pore depths up to 500 μm, i.e. aspect ratios of >1,000.

During all experiments, FFT impedance spectra (FFT IS) [17,19] were recorded every 1.5 s. The measurement signal contained 28 frequencies between 30 Hz and 20 kHz. The spectra obtained were fitted to a model, which allowed on-line extraction of the model parameters.

Results

Regular arrays of currentline pores can be etched into InP for all three doping concentrations investigated. Figure 2a2c shows cross-sectional SEM images of typical pore structures. It can be seen that the pores grow perpendicular to the surface and have a fairly round tip, which gets slightly flatter with increasing ND (see the insets). The pore diameter wpore = 130 nm is pretty much the same in all cases and thus can be seen as being independent of the doping concentrations and of the etching potentials used as long as they are inside the potential ranges for good quality pores. The pore wall thickness dwall, on the other hand, strongly depends on the doping concentration ND; it decreases with increasing ND. As is already known from the literature [20], an analysis of the top view of pores showed that these pores grow in a self-organized hexagonal lattice.

thumbnailFigure 2. Cross-sectional SEM images of curro pores etched into (100) n-type InP. aND = 1·1017 cm−3, U = 7 V, bND = 8·1017 cm−3, U = 5.5 V, cND = 3·1018 cm−3, U = 3 V. A magnified view of the pore tips is shown in the insets. In d, e, and f a typical FFT IS spectrum is shown in form of a Nyquist plot recorded after 38 min of etching. The points represent the measured data, the line is calculated by fitting the measurements to the model given in Eq. 1. The measurement frequencies are indicated

Figure 2d2f shows typical FFT IS spectra recorded during the etching for the three respective doping concentrations shown in a–c after 38 min of etching. The dots represent the measured data, which were fitted (line) by

where Z(ω) is the model impedance, RS is a serial resistance, R1, R2, and R3 are transfer resistances, C1 and C3 are capacitances, and τ2 is a time constant. The measurement frequencies are indicated in the graphs. It can be seen that Eq. 1 is able to fit the data for all three doping concentrations very well, even though the absolute numbers on the axes are quite different between the experiments. It should be mentioned that the fit is just as good to the 500–2,800 FFT IS obtained through one etching experiment after the short nucleation phase (<1 min), lending credibility to the model used. The amount of data generated will easily exceed the page limitation of any publication, in what follows we will therefore focus on some selected aspects of the model that yield the deepest insights into the pore etching mechanisms.

Discussion

Figure 3 shows the product of the etching current I with R1 + R2 as measured by FFT IS, which has the units of a voltage (or potential). Shown are several curves for each doping concentration, which correspond to experiments with different etching potentials in the aforementioned etching potential window that yielded good quality pores. The I (R1 + R2) curves are independent of the etching potential, only depend on the doping concentration ND, and are essentially constant after an initial nucleation phase. In the nucleation phase, the pores do not yet grow in the close-packed hexagonal geometry, and thus the active area differs and affects R1 and R2; therefore, I (R1 + R2) deviates from the constant value in this range. It is tempting to assume that the product I (R1 + R2): = USCR is the potential drop over the space-charge-region (SCR) and in what follows we will argue that this is indeed the case. R1 and C1 must then be interpreted as the resistance and capacitance of the SCR, while R2 and τ2 represent the avalanche breakdown mechanism, which is generating the holes required to etch the semiconductor anodically.

thumbnailFigure 3. Potential drop USCR: = I (R1 + R2) over the space-charge-region (SCR). Several lines correspond to different etching potentials in the aforementioned respective etching potential windows. The curves are constant after an initial nucleation phase and dependent on ND

To prove our claim, we have calculated USCR as a function of doping and pore tip geometry. To do this, the pore geometry (hexagonal lattice arrangement, pore diameter, pore wall thickness) has to be known to some extent, and these values have been determined by SEM. To obtain the properties of the SCR, the Poisson equation has to be solved, yielding the SCR thickness, capacitance and field strength at the pore tips. This is a standard textbook problem for the planar geometry as illustrated in Fig. 4a, cf. [21]. Pore walls need not to be considered, since (by definition) no appreciable current flows through pore walls. For a semi-spherical geometry, as presented in Fig. 4b, a solution of the Poisson equation is given in [22]. These two geometries describe the extremes for the real pore tip shape, which lies between the perfect semi-spherical geometry and the planar geometry, dependent on ND, as shown in the insets of Fig. 2. For all calculations, USCR, as described in Fig. 3, serves as input parameter.

thumbnailFigure 4. Geometries used for theoretical calculations of the SCR properties. a Planar geometry. b Semi-spherical geometry

The thickness of the SCR has been calculated for both geometries and for all three doping concentrations; it is tabulated in Table 1. It is given as 2 dSCR, since it is commonly expected that the pore wall thickness is defined by twice the distance of the space-charge-region, leading to an overlap of the SCRs and thus insulating pore walls, which cannot be further electrochemically dissolved, since no holes are present. Table 1 therefore also shows the pore wall thickness dwall, as measured by SEM. It can be seen that the values are in good agreement, and that the ND dependence is correct.

Table 1. Pore wall thickness dwall as measured from Fig. 2 is in good agreement with twice the value of the SCR width dSCR, which has been calculated for * planar geometry and ** semispherical geometry

The capacitance of the SCR at the pore tips CSCR can be calculated analogously for both geometries. Figure 5 shows the calculated values for the planar (boxes) and semi-spherical (circles) geometry. The stars represent the data measured by FFT IS (C1). It can be seen that these values always lie in between the boundaries that describe the two extreme geometries. Furthermore, the values move to the planar boundary with increasing ND. This reflects very well the change in pore tip shape from round to flat with increasing ND, which is visible in the insets of Fig. 2.

thumbnailFigure 5. Capacitance of the SCR at the pore tips CSCR. The squares represent the values calculated for the planar boundary, the circles the values for the semi-spherical boundary. The stars represent the capacitance C1, as measured by FFT IS

The last SCR quantity that has been calculated is the field strength at the pore tips Ecalc. The calculated values are listed in Table 2. These values are compared to theoretical values of the maximum field strength Em for avalanche breakdown, which can be calculated after [21,23] by

where Eg is the bandgap and εr the dielectric constant of the semiconductor. Please note that the values of Em are for an all solid InP pn-junction, the best comparison available, since no data for the InP-HCl junction exists. Nevertheless, Table 2 shows that the values are in good agreement with Ecalc, as calculated by FFT IS.

Table 2. Potential drop in the SCR, USCR, and field strength at the pore tips Ecalc, as calculated from the FFT IS data

This last finding supports the fact that the part of the impedance described by R2 and τ2 is the avalanche breakdown mechanism, indeed. This interpretation is also capable of explaining the negative (differential) impedance, i.e. the “inductive” loop, which is always present.

All things considered, the results strongly support the validity of the model expressed in Eq. 1 and the interpretation of parameters extracted.

We believe that the third process represents the diffuse layer inside the pores, where R3 and C3 describe the respective resistance and capacitance. This claim has not yet been supported by theoretical calculations, but might yield further insights in the near future.

Conclusion

It has been demonstrated that currentline pore growth in InP is governed by a constant potential USCR in the SCR, which keeps the field strength required for avalanche breakdown constant (since the pore tip shape does not change). This mechanism is present at all three investigated doping concentrations ND, for which hexagonally close packed pore structures with different pore wall thicknesses, but constant pore diameter have been observed. It was possible to extract several important parameters for the etching process in situ, which are otherwise not obtainable. These include the SCR width, the SCR potential, the capacitance at the pore tips, and the avalanche breakdown field strength.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Lehmann V: Electrochemistry of silicon. Wiley-VCH, Weinheim; 2002. Publisher Full Text OpenURL

  2. Föll H, Leisner M, Cojocaru A, Carstensen J:

    Materials, accepted for publication. OpenURL

  3. Kochergin V, Föll H: Porous semiconductors: optical properties and applications. Springer, London; 2009. OpenURL

  4. Sailor MJ: Porous silicon in practice: preparation. Characterization and Applications, Wiley-VCH; 2010. OpenURL

  5. Chazalviel J-N, Ozanam F: Macropores in p-type silicon. In Ordered porous nanostructures and applications. Edited by Wehrspohn RB. Springer, Berlin; 2005. OpenURL

  6. Ossicini S, Pavesi L, Priolo F: Light emitting silicon for microphotonics. Springer, Berlin; 2003. OpenURL

  7. Sa′ar A:

    J. Nanophoton.. 2009, 3:032501. Publisher Full Text OpenURL

  8. Kochergin V, Föll H:

    Mater. Sci. Eng. R. 2006, 52(4–6):93. Publisher Full Text OpenURL

  9. Föll H, Langa S, Carstensen J, Lölkes S, Christophersen M, Tiginyanu IM:

    Adv. Mater.. 2003, 15:3-183. Publisher Full Text OpenURL

  10. Takizawa T, Arai S, Nakahara M:

    Japan J. Appl. Phys.. 1994, 33(2, 5A):L643.

    COI number [1:CAS:528:DyaK2cXksVCqu7o%3D]; Bibcode number [1994JaJAP..33L.643T]

    Publisher Full Text OpenURL

  11. Föll H, Langa S, Carstensen J, Christophersen M, Tiginyanu IM:

    III-Vs Review. 2003, 16(7):42. Publisher Full Text OpenURL

  12. Kikuno E, Amiotti M, Takizawa T, Arai S:

    Japan J. Appl. Phys.. 1995, 34(1, 1):177.

    COI number [1:CAS:528:DyaK2MXjsFOgu78%3D]; Bibcode number [1995JaJAP..34..177K]

    Publisher Full Text OpenURL

  13. Carstensen J, Prange R, Popkirov GS, Föll H:

    Appl. Phys. A. 1998, 67(4):459.

    COI number [1:CAS:528:DyaK1cXmvFers7s%3D]; Bibcode number [1998ApPhA..67..459C]

    Publisher Full Text OpenURL

  14. Leisner M, Carstensen J, Cojocaru A, Föll H:

    ECS Trans.. 2008, 16(3):133.

    COI number [1:CAS:528:DC%2BD1MXhtlOnsA%3D%3D]

    Publisher Full Text OpenURL

  15. Leisner M, Carstensen J, Föll H:

    ECS Trans.. 2009, 19(3):321.

    COI number [1:CAS:528:DC%2BD1MXhtlCkt73M]

    Publisher Full Text OpenURL

  16. Leisner M, Carstensen J, Cojocaru A, Föll H:

    Phys. Stat. Sol. (c). 2009, 206:7-1566. OpenURL

  17. Popkirov GS, Schindler RN:

    Rev. Sci. Instrum.. 1992, 63:5366.

    COI number [1:CAS:528:DyaK38Xms1Sms7s%3D]; Bibcode number [1992RScI...63.5366P]

    Publisher Full Text OpenURL

  18. Langa S, Tiginyanu IM, Carstensen J, Christophersen M, Föll H:

    Electrochem. Solid-State Lett.. 2000, 3(11):514.

    COI number [1:CAS:528:DC%2BD3cXnsFeisbs%3D]

    Publisher Full Text OpenURL

  19. Carstensen J, Foca E, Keipert S, Föll H, Leisner M, Cojocaru A:

    Phys. Stat. Sol. (a). 2008, 205:11-2485. Publisher Full Text OpenURL

  20. Langa S, Tiginyanu IM, Carstensen J, Christophersen M, Föll H:

    Appl. Phys. Lett.. 2003, 82:2-278. Publisher Full Text OpenURL

  21. Sze SM: Physics of semiconductor devices. Wiley & Sons, New York; 1981. OpenURL

  22. Zhang XG:

    J. Electrochem. Soc.. 1991, 138:3750.

    COI number [1:CAS:528:DyaK38Xpt1SmtA%3D%3D]

    Publisher Full Text OpenURL

  23. Sze SM, Gibbons G:

    Appl. Phys. Lett.. 1966, 8:5-111. Publisher Full Text OpenURL