Open Access Open Badges Nano Express

Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

Ke Chu1*, Hong Guo1, Chengchang Jia2, Fazhang Yin1, Ximin Zhang1, Xuebing Liang2 and Hui Chen2

Author Affiliations

1 National Engineering and Technology Research Center for Non-Ferrous Metals Composites, General Research Institute for Nonferrous Metals, 100088, Beijing, China

2 School of Material Science and Engineering, University of Science and Technology Beijing, 100083, Beijing, China

For all author emails, please log on.

Nanoscale Research Letters 2010, 5:868-874  doi:10.1007/s11671-010-9577-2

Published: 19 March 2010


Carbon nanotube–copper (CNT/Cu) composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS) technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

Metal–matrix composites; Carbon nanotubes; Spark plasma sintering; Thermal conductivity