Open Access Open Badges Nano Express

Thermal Evaporation Synthesis and Properties of ZnO Nano/Microstructures Using Carbon Group Elements as the Reducing Agents

H Lv1, DD Sang1, HD Li1*, XB Du2, DM Li1 and GT Zou1

Author Affiliations

1 State Key Laboratory of Superhard Materials, Jilin University, 130012, Changchun, China

2 College of Physics, Jilin University, 130012, Changchun, China

For all author emails, please log on.

Nanoscale Research Letters 2010, 5:620-624  doi:10.1007/s11671-010-9524-2

Published: 21 January 2010


ZnO nano/microstructures have been formed by thermal evaporation method using ZnO powders mixed with carbon group elements (C, Si, Ge, Sn, or Pb) as the reducing agent. For cases of mixed precursors of ZnO/C, ZnO/Si, and ZnO/Ge, the pure ZnO nano/microstructures are realized, while for ZnO/Sn (ZnO/Pb) systems, the phase of Pb2O3(Zn2SnO4) generally are represented in the ZnO products. The appearance of Pb2O3(Zn2SnO4) is attributed to the lower melting point and higher vapor pressure of Sn (Pb) in the heating and evaporation processes. The morphologies and sizes of the products are controlled by adjusting the growth regions and/or introducing gaseous argon. Room temperature (RT) photoluminescence spectra indicate that the intensity (peak position) of the ultraviolet emission is increased (redshift) due to the existence of Zn2SnO4 phase in the ZnO products. The Pb2O3(Zn2SnO4) phase in ZnO nano/microstructures plays a important role in enhancing the saturation magnetizations of RT ferromagnetism with respect to the case of pure ZnO products fabricated by the precursor of mixed ZnO and graphite.

ZnO nano/microstructures; Thermal evaporation; Reducing agents of carbon group elements; Growth mechanism; Optical and ferromagnetic properties