Abstract
The assembly of singlewalled carbon nanotubes (SWCNTs) using the AC dielectrophoresis technique is studied theoretically. It is found that the comb electrode bears better position control of SWCNTs compared to the parallel electrode. In the assembly, when some SWCNTs bridge the electrode first, they can greatly alter the local electrical field so as to “screen off” later coming SWCNTs, which contributes to the formation of dispersed SWCNT array. The screening distance scales with the gap width of electrodes and the length of SWCNTs, which provides a way to estimate the assembled density of SWCNTs. The influence of thermal noise on SWCNTs alignment is also analyzed in the simulation. It is shown that the status of the array distribution for SWCNTs is decided by the competition between the thermal noise and the AC electricfield strength. This influence of the thermal noise can be suppressed by using higher AC voltage to assemble the SWCNTs.
Keywords:
Singlewalled carbon nanotubes (SWCNTs); AC dielectrophoresis; SimulationIntroduction
Since its discovery in 1991, carbon nanotubes (CNTs) have attracted great research interests due to its unique onedimensional structure and outstanding properties [1]. A large amount of research has been conducted to explore both the fundamental properties [24] and application potentials for CNTs. In terms of applications, highperformance CNTbased fieldeffect transistors [5], solar cells [6], hazard gas detector [7], and DNA sensors [8] have been widely reported. It is also found that CNTs have excellent field emission properties [9,10]. With significant advantages over their traditional counterpart, CNTs are generally believed to be an ideal building block for the next generation electronics, optoelectronics, and highperformance sensors. However, the selectable and controllable placement and patterning of this nanoscale material has remained a challenge for their practical application. Common techniques to form aligned nanostructures include microwave plasma CVD [11], phase transformation [12], thermal oxidation [13], and electroless deposition [14]. Recently, researchers have shown that dielectrophoresis (DEP) is an efficient technique to manipulate carbon nanotubes [15,16]. With no functionalization, DEP has the potential of separating metallicsinglewalled carbon nanotubes (SWCNTs) and semiconductingSWCNTs [16], aligning carbon nanotubes between microelectrodes [17], and realizing largescale manipulation [18]. Both experimental and theoretical work are conducted, most studies focus on the frequencydependent DEP behavior of CNTs [19], and the translation and rotation of CNTs under electrical field [20]. However, the mechanisms for controllable patterning of CNTs between electrodes are not fully understood.
Here, the assembly of SWCNTs between electrodes is analyzed with the electrophoresis model. The influences of various factors including the electrode type, DEP voltage and thermal noise on the DEP assembly are taken into consideration. Besides, the influence of already deposited SWCNTs on the alignment of succeeding ones is also studied.
Theory
We model single carbon nanotube bundles as prolate ellipsoid with a = 500 nm, b = c = 10 nm. Its movement in suspending medium is governed by Langevin equation [21]:
where m is the mass of bundle, F the external force, and f the friction factor related to IPA’s viscosity η () by [20]
In our modeling, F consists of two components: one is the deterministic DEP force due to electrical field generated by the electrodes; while the other is the random force induced by thermal noise in the surrounding medium. The latter leads to the wellknown Brownian motion of microparticles.
DEP Movement
The DEP force is expressed in effective dipole approximation as [22]:
where is the induced dipole moment on SWCNTbundles. External field exert a torque on the dipole, and make the SWCNTbundle align with the line of electrical field [23]. In this condition, let parallel to SWCNTbundle’s major axis a, then Eq. 3 gives:
where and are the complex dielectric constant of SWCNTbundles and suspending medium, respectively. Write ε* in the form of , we can derive that
In high frequency domain (which is usually the condition for the dielectrophretic deposition of carbon nanotubes), is dominated by the dielectric constants over the conductivity, it can be simplified as:
Substitute this term into Eq. 3 gives:
Considering the mixture of sSWCNT and mSWCNT, it is estimated that for SWCNTbundles, while for IPA. For , the SWCNTbundles experience positive DEP, which is illustrated in Fig. 1. As analyzed by previous papers [20], the SWCNTbundles will be collected to the regions with the highest field strength, which is usually around the electrodes.
Figure 1. Carbon nanotubes subjected to positive dielectriphoresis. It is aligned with the field lines and moves towards the region with higher field strength
Brownian Motion
The influence of thermal noise in the medium increases when the size of microparticles decreases. It can be described by the Brownian motion model. For SWCNTbundles, in time interval ∆t, the Brownian displacement in each of the three coordinate axes can be expressed as [21]:
where K_{B} is the Boltzmann constant, T the room temperature, f the friction factor of SWCNTbundle, and G_{i} a Gaussian distributed random number.
The Solution of Langevin Equation
For DEP movement, the solution of Eq. 1can be approximated as:
where the characteristic time is calculated to be 0.1 ns. For time intervals sufficient longer than α, Eq. 9can be approximated as:
Simulation
We use commercial finiteelement software ANSYS 10.0 multiphysics [24] to solve the Poisson’s equation for (a) parallel electrode and (b) comb electrode, as shown in Fig. 2. The results are exported to Matlab for further processing. The distance between electrode pairs are both 1 μm, comparable to the length of SWCNTbundle. The solution volume for the above two electrode structure are 9 × 6× 10 μm^{3} and 5 × 6× 10 μm^{3}, respectively, the distance between neighboring grid point is 0.05 μm, which is precise enough for our simulation. Using Eq. 7, we can get the DEP force at every grid point.
Figure 2. The electrode structure used in simulation:aparallel electrode;bcomb electrode;cparallel electrode with SWCNTbundle bridged; anddcomb electrode with SWCNTbundle bridged. The gap between the electrodes pairs for all structure is 1 μm. The width of the fingers and the space between the neighboring fingers in the comb electrode are, respectively, 100 nm and 0.3 μm
The movement of SWCNTbundles is divided into a series of steps. For every time step, the terminal velocity is evaluated by Eq. 9. To avoid numerical errors, the time step is adjusted to make the space step constant, which means near regions with high field strength, the time step is effectively reduced. In our simulation, this time step is well above the characteristic time ∝, so the use of Eq. 9is justified. To account for Brownian motion, we superpose the Brownian displacement given by Eq. 7at every step.
To get the final SWCNTbundles’ space distribution on the electrode, we initiate 1,000 randomly distributed SWCNTbundles in the solution, and trace the movement of every bundle until it reaches the substrate. Considering the relatively low CNTs’ density in medium solution (in the order of μg/l in device applications), we neglect the interaction between SWCNTbundles when they are suspended in the medium. However, once a bundle first attach to the electrode, it may severely alter the local electrical field structure. Thus, change the DEP movement of latter bundles. We numerically demonstrate this effect by solving the Poisson’s equation with one SWCNTbundle bridge the electrode (Fig. 2c, d) and then use this field solution to simulate the subsequent SWCNTbundles’ DEP process.
Result and Discussion
The simulated electrical field strengthE^{2}for parallel and comb electrode is shown in Fig. 3. According to DEP theory for SWCNTbundles, is proportional to the gradient ofE^{2}, so SWCNTbundles will move toward the region with the highest field strength (the red zone in Fig. 3). Right above the surface of substrate (z = 0.2 μm), the highest electrical field appears at the edge of the electrode. A little higher (z = 0.5 μm), the highest field appears in the middle of the gap. Comparing Fig. 3a with b, we observe that comb electrode generates field map similar to its geometry structure. However, it is only for plane sufficient near the surface (z = 0.2 μm, which is comparable to the distance between neighboring finger tips). For the plane atz = 0.5 μm, comb electrode generate electrical field just like parallel electrode.
Figure 3. Simulated electrical field strength (E^{2}) at the surface of the substrate (X–Yplane) foraparallel electrode andbcomb electrode. The left plot corresponds to the plane atYcoordinatez = 0.2 μm, the right plot corresponds to the plane atz = 0.5 μm
Because of its subtle electrical field structure, comb electrode provides possibilities to align SWCNTbundles to desire cites on substrate. As shown in Fig. 3b, near the surface, the field varies periodically in the ydirection. Correspondingly, the SWCNTbundles are supposed to assemble into array form with the same period. We simulate the distribution of 1,000 SWCNTbundles after DEP for both parallel and comb electrode. As shown in Fig. 4, this distribution perfectly reflects the field structure generated by the electrode. For parallel structure, almost all the bundles locate in the gap between the two adjacent electrodes, and it is uniformly distributed. This indicates that parallel electrode is efficient to capture SWCNTbundles. When the length of bundle is larger than the width of the gap (1 μm in Fig. 4a), there is a high ratio of SWCNTbundles bridged the electrode, which is desired in electrical characterization and device fabrication. In fact, there are reports using parallel electrode DEP to construct CNTbased fieldeffect transistors, thin film transistors and solar cells. However, because of the random distribution of SWCNTbundles, the parallel electrode is not a good choice to construct large number of devices based on single bundle of SWCNTs. Comb electrode, as shown in Fig. 4b, can assemble SWCNTbundles into array structure. The SWCNTbundles are collected in the region between countering fingertips because of its higher local field strength. In our simulation, the distance between neighboring fingers is 0.3 μm, and the distribution of SWCNTbundles basically has the same period. Confirmed by previous experiments [21], our simulation indicates that comb electrode has the potential to realize largescale assembly of SWCNT devices.
Figure 4. Simulated distribution of 1,000 SWCNTbundles foraparallel electrode andbcomb electrode. The yellow regions represent the electrodes and the blue circles represent the centroids of SWCNTbundles
When suspended in the solution medium, the interaction between SWCNTbundles can be neglected because of relatively low density (in the order of μg/l). On the other hand, when the interaction between two SWCNTbundles are taken into account, we are actually dealing with the interaction between the two dipole moments and For one SWCNTbundle, the interaction force is due to the field created by the dipole moment of another SWCNTbundle. This interaction force can be expressed as where is the field created by dipole moment So generally, this interaction force is a secondary effect, and will not influence the DEP movement due to the fact that the DEP force produced by external field dominates. The case that the interaction between SWCNTbundles will play a main role is when the external field is uniform, in which and there is no DEP movement. In our simulation, the use of microelectrodes will cause the generation of strong nonuniform electrical fields. So, the interaction between SWCNTbundles will not change the results of our simulation.
Whenever one single bundle bridges the electrode, it can greatly change the local electrical field structure. The mechanism can be explained as follows: When no SWCNTbundle bridges the electrodes, the voltage drop exists across the gap of the electrode pairs. After a SWCNTbundle bridges the electrodes, the contact resistance of metal–nanotube junction plays a dominant role and absorbs most of the voltage drop [25]. As a result, the main body of SWCNTbundle is nearly equipotential. Therefore, when the SWCNTbundle bridges the electrodes, the local potential distribution is changed, thereby changing the local electrical field. We numerically demonstrate this effect by simulate the electrical field structure for both parallel and comb electrode when one SWCNTbundle bridged the electrodes. As shown in Fig. 5, for both parallel and comb electrode structure, the highest field region (red zone) is intercepted by the presence of bridged SWCNTbundle at Y = 0. Away from the bundle, the field structure remains the same as in Fig. 4. Several experiments confirmed this “screen” effect of bridged SWCNTbundle to latter bundles in DEP process. For parallel electrode, SWCNTbundles tend to form dispersively aligned parallel array, with an average distance between neighboring bundles. While for comb electrode, this effect ensures that for every fingertip electrode pair, there is only one bundle bridged. The results are consistent with our earlier experimental research [26,27]. Using modified electrical field for CNTbridged electrode, we simulate the corresponding distribution of latter SWCNTbundles, as shown in Fig. 6. For parallel electrode, there is approximately a 0.4μm (−0.2 μm to +0.2 μm) wide region where there’s almost no SWCNTbundles landed. Outside this region, the bundles are uniformly distributed as in Fig. 4. For comb electrode, very few bundles land between the fingertip pair at Y = 0 μm. The other fingertip pairs are not affected by the “screen effect”, probably because the distance between neighboring pairs (0.3 μm) exceed the “screening length”, which is 0.2 μm in Fig. 6a.
Figure 5. With one SWCNTbundle bridge the electrode atY = 0 μm, simulated electrical field strength (E^{2}) at the surface of the substrate (X–Yplane) foraparallel electrode andbcomb electrode. The left plot corresponds to plane atz = 0.2 μm, the right plot corresponds to plane atz = 0.5 μm
Figure 6. Simulated distribution of 1,000 SWCNTbundles foraparallel electrode andbcomb electrode. In both electrodes, there is one SWCNTbundle prebridged atY = 0 μm. The yellow regions represent the electrodes and the blue circles represent the centroids of SWCNTbundles
The “screening effect” in DEP process makes the controllable patterning of carbon nanotubes possible. In our simulation, for 1μm electrode gap and 1μm long SWCNTbundle, the screening length is about 0.2 μm. This provides estimation for the upper limit of the density of DEP patterned carbon nanotubes array. Because the electrostatics scales with the size of the objects, we can anticipate the shorter screening length if we reduce the gap of electrodes as well as the length of SWCNTbundles. That means if we use 100nmlong SWCNTbundle and keep the size ratio of all the structures constant, the screening length will be reduced to 20 nm. Unfortunately, for smaller SWCNT bundles, the influence of the thermal noise increases. Stronger Brownian motion will disturb the deterministic DEP movement. We simulate the DEP process for the 100nmscale case: the gap of electrodes and the length of SWCNTbundles are reduced to 100 nm; the size ratio of all structures is kept constant. The results are shown in Fig. 7, in which the peaktopeak voltage (V) is 1 V, with the electrical field in the medium kept invariant as that for the 1μmscale case. The movement of SWCNTbundle is randomized by the thermal noise even if it is very close to the electrode surface. WhenV = 5 V, the DEP force is increased so as to overcome the Brownian motion near the electrode. The corresponding distribution of SWCNTbundles for the comb electrode at 100 nm scale is simulated, as shown in Fig. 8. It indicates that when peaktopeak voltage is 1 V, the thermal noise disarranges the array distribution while the peaktopeak voltage of 5 V can overcome the influence of thermal noise and retain the array distribution.
Figure 7. The DEP movement of SWCNT bundles in the 100nmscale case foraV = 1 V andbV = 5 V
Figure 8. Simulated distribution of 1,000 SWCNTbundles for the comb electrode with the peaktopeak voltage ofa1 V andb5 V. The yellow region represent electrodes, the blue circles represent the centroids of SWCNTbundles
Conclusion
The assembly of SWCNTs on the electrodes using the DEP method has been studied theoretically. The influences of electrode type, electrode voltage, thermal noise, and asbridged nanotubes on the results of DEP assembly are analyzed. The results suggest that: (1) although the parallel and comb electrode are both effective electrode structures to align the SWCNTs, the comb electrode has a better position control of SWCNTs than the parallel electrode; (2) once a SWNCT bundle bridges on the electrode, it will change the local electrical field and “screen off” the SWCNTs that approach later; for parallel electrode this effect results in the formation of dispersed SWCNT array, while for comb electrode it guarantees that one fingertip pair collects only one SWCNT bundle; (3) the density of DEP assembled array is limited by the “screening length”, which scales with the gap width of electrodes and the length of SWCNT bundle; and (4) the thermal noise has an important influence on the DEP assembly of SWCNTs, which is more significant for the smaller electrode structures and shorter SWCNTs; by increasing the AC voltage, this influence can be effectively eliminated.
Misc
Changxin Chen and Yang Lu contributed equally to this work.
Acknowledgment
This work is supported by National Natural Science Foundation of China No. 60807008, Shanghai International Science and Technology Cooperation Foundation No. 08520741500, Shanghai Science and Technology Grant No. 0752nm015, National Natural Science Foundation of China No. 50730008 and National Basic Research Program of China No. 2006CB300406.
References

Avouris P, Appenzeller J, Martel R, Wind SJ:
Proc. IEEE. 2003, 91:1772.
COI number [1:CAS:528:DC%2BD3sXpt1GqsLs%3D]
Publisher Full Text 
Nature. 1998, 393:240.
COI number [1:CAS:528:DyaK1cXjtlymtLY%3D]; Bibcode number [1998Natur.393..240W]
Publisher Full Text 
Nakanishi T, Bachtold A, Dekker C:
Phys. Rev. B. 2002, 66:073307.
Bibcode number [2002PhRvB..66g3307N]
Publisher Full Text 
Phys. Rev. Lett.. 1999, 83:5547.
COI number [1:CAS:528:DC%2BD3cXnt1OmsQ%3D%3D]; Bibcode number [1999PhRvL..83.5547E]
Publisher Full Text 
Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H:
Nat. Mater.. 2002, 1:241.
COI number [1:CAS:528:DC%2BD38Xpt1amur8%3D]; Bibcode number [2002NatMa...1..241J]
Publisher Full Text 
Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H:
Science. 2000, 287:622.
COI number [1:CAS:528:DC%2BD3cXovVWgtA%3D%3D]; Bibcode number [2000Sci...287..622K]
Publisher Full Text 
Staii C, Johnson AT, Chen JM, Gelperin A:
Nano Lett.. 2005, 5:1774.
COI number [1:CAS:528:DC%2BD2MXosVGgsbw%3D]
Publisher Full Text 
Rakhi RB, Sethupathi K, Ramaprabhu S:
Nanoscale Res. Lett.. 2007, 2:331.
COI number [1:CAS:528:DC%2BD2sXpslegtr8%3D]; Bibcode number [2007NRL.....2..331R]
Publisher Full Text 
Srivastava SK, Vankar VD, Kumar V, Singh VN:
Nanoscale Res. Lett.. 2008, 3:205.
COI number [1:CAS:528:DC%2BD1cXhsVyhtr%2FF]; Bibcode number [2008NRL.....3..205S]
Publisher Full Text 
Jian SR, Chen YT, Wang CF, et al.:
Nanoscale Res. Lett.. 2008, 3:230.
COI number [1:CAS:528:DC%2BD1cXhsVyhtrzO]; Bibcode number [2008NRL.....3..230J]
Publisher Full Text 
Adv. Mater.. 2008, 20:1055.
COI number [1:CAS:528:DC%2BD1cXlt1WmtL0%3D]
Publisher Full Text 
Adv. Mater.. 2008, 20:2622.
COI number [1:CAS:528:DC%2BD1cXptVOrsLc%3D]; Bibcode number [2005JMatR..20.2622L]
Publisher Full Text 
Electrochem. Commun.. 2007, 9:1247.
COI number [1:CAS:528:DC%2BD2sXlslGit7o%3D]
Publisher Full Text 
Chen XQ, Saito T, Yamada H, Matsushige K:
Appl. Phys. Lett.. 2001, 78:3714.
COI number [1:CAS:528:DC%2BD3MXjvF2mtLs%3D]; Bibcode number [2001ApPhL..78.3714C]
Publisher Full Text 
Krupke R, Hennrich F, Löhneysen H, Kappes MM:
Science. 2003, 301:344.
COI number [1:CAS:528:DC%2BD3sXls1yhs7c%3D]; Bibcode number [2003Sci...301..344K]
Publisher Full Text 
Kumar MS, Lee SH, Kim TY, Kim TH, Song SM, Yang JW, Nahm KS, Suh EK:
SolidState Electron.. 2003, 47:2075. Publisher Full Text

Krupke R, Hennrich F, Weber HB, Kappes MM, Löhneysen H:
Nano Lett.. 2003, 3:1019.
COI number [1:CAS:528:DC%2BD3sXltF2rur4%3D]
Publisher Full Text 
Krupke R, Hennrich F, Kappes MM, Löhneysen H:
Nano Lett.. 2004, 4:1395.
COI number [1:CAS:528:DC%2BD2cXlsF2itbw%3D]
Publisher Full Text 
J. Appl. Phys.. 2006, 100:024309.
Bibcode number [2006JAP...100b4309P]
Publisher Full Text 
Morgan H: Electrokinetics AC Colloids and Nanoparticle. PA Research Studies Press, Philadelphia; 2003.

J. Electrost.. 1997, 42:279. Publisher Full Text

Jones TB: Electromechanics of Particles. Cambridge University Press, Cambridge; 1995.

Chen Z, Appenzeller J, Knoch J, Lin Y, Avouris P:
Nano Lett.. 2005, 5:1497.
COI number [1:CAS:528:DC%2BD2MXlsVelu7k%3D]
Publisher Full Text 
J. Phys. D Appl. Phys. (Berl). 2005, 39:172.
Bibcode number [2006JPhD...39..172C]
Publisher Full Text 
Chen CX, Xu D, Kong ES, Zhang YF:
IEEE Electron. Dev. Lett.. 2006, 27:852.
Bibcode number [2006IEDL...27..852C]
Publisher Full Text