Open Access Nano Express

Fabrication and Properties of Porphyrin Nano- and Micro-particles with Novel Morphology

Xiangqing Li, Line Zhang, Jin Mu* and Jinlong Qiu

Author Affiliations

Department of Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, P.O. Box 427, 130 Meilong Road, Shanghai, 200237, China

For all author emails, please log on.

Nanoscale Research Letters 2008, 3:169-178  doi:10.1007/s11671-008-9132-6

Published: 21 May 2008


New types of porphyrin nano- and micro-particles composed of J- and H-heteroaggregates were prepared by electrostatic self-assembly of two oppositely charged porphyrins, tetrakis(4-trimethylammoniophenyl)porphyrin (H2TAPP4+) and tetrakis(4-sulfonatophenyl)porphyrin cobalt(II) (CoTPPS4−), in aqueous solutions. Transmission electron microscopy (TEM) images showed novel morphology and size distribution of porphyrin particles fabricated under different experimental conditions. The assembly process of the nano- and micro-particles was monitored by UV–Vis spectra. Fluorescence spectra and UV–Vis spectra provided optical information on the formation of the nano- and micro-particles. Cyclic voltammograms of the porphyrin particles indicated that the electron gain and loss of the H2TAPP4+ion were restrained, and the electron transfer of the CoTPPS4−ion was promoted in the J- and H-type porphyrin heteroaggregates within the particles. The stability and constitution of the nano- and micro-particles were confirmed by UV-light irradiation, heat-treatment, and pH and ionic strength changes. Photoelectrochemical measurements showed that the photoelectron transfer of TiO2modified with the particles was more efficient than that of TiO2sensitized by either monomers. The photoelectronic and photocatalytic properties of the products indicated that the pyramidal or spherical configuration of the nano- and micro-particles was favorable for the absorption and transfer of the energy. It can be found that TiO2sensitized by the porphyrin nano- and micro-particles exhibits significant improvement in energy conversion and photocatalytic activity with reference to pure TiO2.

Porphyrins; Self-assembly; Heteroaggregates; Morphology; Properties