SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Open Badges Nano Express

Multiscale modeling and simulation of nanotube-based torsional oscillators

Shaoping Xiao* and Wenyi Hou

Author Affiliations

Department of Mechanical and Industrial Engineering, Center for Computer-Aided Design, The University of Iowa, 3131, Seamans Center, Iowa City, IA, 52242, USA

For all author emails, please log on.

Nanoscale Research Letters 2006, 2:54-59  doi:10.1007/s11671-006-9030-8

The electronic version of this article is the complete one and can be found online at:

Received:11 October 2006
Accepted:25 October 2006
Published:28 November 2006

© 2006 to the authors


In this paper, we propose the first numerical study of nanotube-based torsional oscillators via developing a new multiscale model. The edge-to-edge technique was employed in this multiscale method to couple the molecular model, i.e., nanotubes, and the continuum model, i.e., the metal paddle. Without losing accuracy, the metal paddle was treated as the rigid body in the continuum model. Torsional oscillators containing (10,0) nanotubes were mainly studied. We considered various initial angles of twist to depict linear/nonlinear characteristics of torsional oscillators. Furthermore, effects of vacancy defects and temperature on mechanisms of nanotube-based torsional oscillators were discussed.

Nanotube; Torsional oscillator; Multiscale; Vacancy defects; Temperature

Nano Express



The authors acknowledge support from the Army Research Office (Contract: # W911NF-06-C-0140) and the National Science Foundation (Grant # 0630153).


  1. Iijima S:

    Nature. 1991, 354:56.

    COI number [1:CAS:528:DyaK38Xmt1Ojtg%3D%3D]

    Publisher Full Text OpenURL

  2. Popov VN:

    Mater. Sci. Eng. R. 2004, 43:61. Publisher Full Text OpenURL

  3. Kim P, Lieber CM:

    Science. 1999, 286:2148.

    COI number [1:CAS:528:DyaK1MXotFGrtrY%3D]

    Publisher Full Text OpenURL

  4. Srivastava D:

    Nanotechnology. 1997, 8:186.

    COI number [1:CAS:528:DyaK1cXjtVejtQ%3D%3D]

    Publisher Full Text OpenURL

  5. Kang JW, Hwang HJ:

    Nanotechnology. 2004, 15:1633.

    COI number [1:CAS:528:DC%2BD2MXhsV2luw%3D%3D]

    Publisher Full Text OpenURL

  6. Xiao SP, Andersen D, Han R, Hou WY:

    Int. J. Theo. Comput. Nano.. 2006, 3:143. OpenURL

  7. Williams PA, Papadakis SJ, Patel AM, Falvo MR, Washburn S, Superfine R:

    Phys. Rev. Lett.. 2002, 89:255502.

    COI number [1:STN:280:DC%2BD38jitl2ntw%3D%3D]

    Publisher Full Text OpenURL

  8. Williams PA, Papadakis SJ, Patel AM, Falvo MR, Washburn S, Superfine R:

    Phys. Rev. Lett.. 2003, 82:805.

    COI number [1:CAS:528:DC%2BD3sXotlSrsw%3D%3D]


  9. Papadakis SJ, Hall AR, Williams PA, Vicci L, Falvo MR, Superfine R, Washburn S:

    Phys. Rev. Lett.. 2004, 93:146101.

    COI number [1:STN:280:DC%2BD2crlsVShtg%3D%3D]

    Publisher Full Text OpenURL

  10. Xiao SP, Belytschko T:

    Comp. Meth. Appl. Mech. Engrg.. 2004, 193:1645. Publisher Full Text OpenURL

  11. Belytschko T, Xiao SP:

    Int. J. Mult. Comput. Engrg.. 2003, 1:115. Publisher Full Text OpenURL

  12. Belytschko T, Xiao SP, Schatz G, Ruoff R:

    Phys. Rev. B. 2002, 65:235430. Publisher Full Text OpenURL

  13. Mielke SL, Troya D, Zhang SL, Li JL, Xiao SP, Car R, Ruoff RS, Schatz GC, Belytschko T:

    Chem. Phys. Lett.. 2004, 390:413.

    COI number [1:CAS:528:DC%2BD2cXktVaitr4%3D]

    Publisher Full Text OpenURL

  14. Hoover WG:

    Phys. Rev. A. 1985, 31:1695. Publisher Full Text OpenURL