Open Access Nano Express

Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances

Alexander O Govorov1*, Wei Zhang1, Timur Skeini1, Hugh Richardson1, Jaebeom Lee2 and Nicholas A Kotov2

Author Affiliations

1 Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA

2 Department of Chemical Engineering, Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA

For all author emails, please log on.

Nanoscale Research Letters 2006, 1:84-90  doi:10.1007/s11671-006-9015-7


The electronic version of this article is the complete one and can be found online at:


Published:26 July 2006

© 2006 to the authors

Abstract

We describe the peculiar conditions under which optically driven gold nanoparticles (NPs) can significantly increase temperature or even melt a surrounding matrix. The heating and melting processes occur under light illumination and involve the plasmon resonance. For the matrix, we consider water, ice, and polymer. Melting and heating the matrix becomes possible if a nanoparticle size is large enough. Significant enhancement of the heating effect can appear in ensembles of NPs due to an increase of a volume of metal and electric-field amplification.

Keywords:
Metal nanoparticles; Heat generation; Plasmons

Nano Express

[1-17]

Acknowledgements

This work was supported by the NanoBioTechnology Initiative at Ohio University.

References

  1. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi. SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI:

    Phys. Rev. Lett.. 2002, 89:203002.

    COI number [1:CAS:528:DC%2BD38XosVenur4%3D]

    Publisher Full Text OpenURL

  2. Lee. J, Govorov AO, Dulka J, Kotov NA:

    Nano Lett.. 2004, 4:2323.

    COI number [1:CAS:528:DC%2BD2cXpt1Cqtbg%3D]

    Publisher Full Text OpenURL

  3. Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B:

    PNAS. 2003, 100:11350.

    COI number [1:CAS:528:DC%2BD3sXotFKms78%3D]

    Publisher Full Text OpenURL

  4. Gobin AM, O’Neal DP, Watkins DM, Halas NJ, Drezek RA, West JL:

    Lasers Surg. Med.. 2005, 37:123. Publisher Full Text OpenURL

  5. Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL, Parak WJ, Mohwald H, Sukhorukov GB:

    Nano Lett.. 2005, 5:1372.

    COI number [1:CAS:528:DC%2BD2MXlsV2qsrY%3D]

    Publisher Full Text OpenURL

  6. Pitsillides CM, Joe EK, Xunbin Wei, Anderson RR, Lin CP:

    Biophys. J.. 2003, 84:4023.

    COI number [1:CAS:528:DC%2BD3sXksVKnsbg%3D]

    Publisher Full Text OpenURL

  7. Lee J, Govorov AO, Kotov NA:

    Angewandte Chemie. 2005, 117:7605. Publisher Full Text OpenURL

  8. Carslaw HS, Jaeger JC: Conduction of Heat in Solids. Oxford University Press, London; 1993. OpenURL

  9. Landau LD, Lifshitz EM: Electrodynamics of Continuous Media. Pergamon Press, New York; 1960. OpenURL

  10. Palik ED: Handbook of Optical Constants of Solids. Academic Press, New York; 1985. OpenURL

  11. Munro JC, Frank CW:

    Langmuir. 2004, 20:3339.

    COI number [1:CAS:528:DC%2BD2cXoslSgtLo%3D]

    Publisher Full Text OpenURL

  12. Persson B, Lang N:

    Phys. Rev. B. 1982, 26:5409.

    COI number [1:CAS:528:DyaL3sXhtValsQ%3D%3D]

    Publisher Full Text OpenURL

  13. Peng S, Fuchs A, Wirtz RA:

    J. Appl. Polymer Sci.. 2004, 93:1240.

    COI number [1:CAS:528:DC%2BD2cXkvFOrtb8%3D]

    Publisher Full Text OpenURL

  14. Dimarzio EA, Dowell F:

    J. Appl. Phys.. 1979, 50:6061.

    COI number [1:CAS:528:DyaL3cXit12qsw%3D%3D]

    Publisher Full Text OpenURL

  15. Nie S, Emory SR:

    Science. 1997, 275:1102.

    COI number [1:CAS:528:DyaK2sXhtlGlsL4%3D]

    Publisher Full Text OpenURL